Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Load the model and tokenizer | |
model_name = "Qwen/Qwen2.5-1.5B-Instruct" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto" | |
) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [ | |
{"role": "system", "content": "You are a helpful assistant."} | |
] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("Ask me anything about data structures in LeetCode"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Prepare the chat message for the model | |
messages = st.session_state.messages[-10:] # limit messages to last 10 for performance | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) | |
# Generate response from the model | |
generated_ids = model.generate( | |
**model_inputs, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
# Decode the response | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
# Add bot response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
# Display bot response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |