Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load the tokenizer and model (change 'model_name' to your specific model) | |
model_name = "gpt2" # Replace with your model | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
# Function to generate a response | |
def generate_response(prompt): | |
if not prompt: | |
return "Please enter a prompt." | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
output = model.generate(**inputs, max_new_tokens=512) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response | |
# Streamlit UI | |
st.title("AI Text Generator") | |
prompt = st.text_area("Enter your prompt:", placeholder="Type your question or prompt here...") | |
if st.button("Generate Response"): | |
with st.spinner("Generating response..."): | |
response = generate_response(prompt) | |
st.text_area("Model Response:", value=response, height=200, disabled=True) | |