File size: 7,006 Bytes
194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 7d0ae9a 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b a4f81c0 194688b 843b1b0 194688b a4f81c0 194688b a4f81c0 194688b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
from fastapi import FastAPI
from pydantic import BaseModel, Field
import numpy as np
import onnxruntime as ort
from typing_extensions import Annotated
import gradio as gr
from cryptography.fernet import Fernet
import os
import pickle as pkl
# Model load
key = os.getenv("ONNX_KEY")
cipher = Fernet(key)
VERSION = "0.0.3"
TITLE = f"DVPI beregnings API (version {VERSION})"
DESCRIPTION = "Beregn Dansk Vandløbs Plante Indeks (DVPI) fra dækningsgrad af plantearter. Beregningen er baseret på en model som efterligner DVPI beregningsmetoden og er dermed ikke eksakt, usikkerheden er i gennemsnit **±0.017 EQR-enheder** og **R<sup>2</sup>=0.98** når den sammenlignes med den originale. Kan der ikke beregnes en værdi, returneres EQR=0 og DVPI=0."
URL = "https://kennethtm-dvpi.hf.space"
# Load ONNX model and species mappings
with open("model_v3.bin", "rb") as f:
encrypted = f.read()
decrypted = cipher.decrypt(encrypted)
ort_session = ort.InferenceSession(decrypted)
# Load metadata
with open("metadata_v3.bin", "rb") as f:
encrypted = f.read()
decrypted = cipher.decrypt(encrypted)
metadata = pkl.loads(decrypted)
latinname2stancode = metadata["latinname2stancode"]
valid_taxacodes = metadata["valid_taxacodes"]
normalizer_1 = metadata["normalizer_1"]
normalizer_2 = metadata["normalizer_2"]
taxacode2idx = metadata["taxacode2idx"]
# Preprocess species
def preprocess_species(species: dict[int: float]) -> dict[int: float]:
# Apply filter 1
intermediate_species = {}
for sccode, value in species.items():
if sccode in normalizer_1:
new_sccode = normalizer_1[sccode]
if new_sccode in intermediate_species:
intermediate_species[new_sccode] += value
else:
intermediate_species[new_sccode] = value
# Apply filter 2
final_species = {}
for sccode, value in intermediate_species.items():
if sccode in normalizer_2:
if normalizer_2[sccode] is not None:
new_sccode = normalizer_2[sccode]
if new_sccode in final_species:
final_species[new_sccode] += value
else:
final_species[new_sccode] = value
else:
final_species[sccode] = value
# filter valid taxacodes
final_species = {taxacode: value for taxacode, value in final_species.items() if taxacode in valid_taxacodes}
return final_species
class SpeciesCover(BaseModel):
species: dict[int, Annotated[float, Field(ge=0, le=100)]]
model_config = {
"json_schema_extra": {
"examples": [{
"species": {
6458: 25.0,
4158: 15.5,
7208: 10.0
}
}]
}
}
class EQRResult(BaseModel):
EQR: float
DVPI: int
version: str = VERSION
# Create FastAPI app
app = FastAPI(title=TITLE,
description=DESCRIPTION)
def eqr_to_dvpi(eqr: float) -> int:
if eqr < 0.20:
return 1
elif eqr < 0.35:
return 2
elif eqr < 0.50:
return 3
elif eqr < 0.70:
return 4
else:
return 5
# FastAPI routes
@app.post("/dvpi")
def predict(cover_data: SpeciesCover) -> EQRResult:
"""Predict EQR and DVPI from species cover data"""
species_preproc = preprocess_species(cover_data.species)
input_vector = np.zeros((1, len(valid_taxacodes)))
for species, cover in species_preproc.items():
idx = taxacode2idx[species]
input_vector[0, idx] = cover
if np.sum(input_vector) == 0:
return EQRResult(EQR=0, DVPI=0)
input_name = ort_session.get_inputs()[0].name
ort_inputs = {input_name: input_vector.astype(np.float32)}
_, output_2 = ort_session.run(None, ort_inputs)
eqr = float(output_2[0][0])
eqr = 1 if eqr > 1 else eqr
dvpi = eqr_to_dvpi(eqr)
return EQRResult(EQR=round(eqr, 3), DVPI=dvpi)
# Gradio app
def add_entry(species, cover, current_dict) -> tuple[dict, str]:
current_dict[species] = cover
return current_dict, current_dict
def gradio_predict(cover_data: dict):
if len(cover_data) == 0:
return {}
cover_data_code = {latinname2stancode[species]: cover for species, cover in cover_data.items()}
data = SpeciesCover(species=cover_data_code)
result = predict(data)
return result.model_dump()
with gr.Blocks() as io:
gr.Markdown(f"# {TITLE}")
gr.Markdown(DESCRIPTION)
with gr.Tab(label = "Beregner"):
gr.Markdown("Beregning er baseret på samfund af plantearter og deres dækningsgrad. Når API'et bruges anvendes arternes [Stancode](https://dce.au.dk/overvaagning/stancode/stancodelister) (SC1064) - se 'Dokumentation' for eksempel på brug.")
current_dict = gr.State({})
with gr.Row():
species_choices = sorted(list(latinname2stancode.keys()))
species_input = gr.Dropdown(choices=species_choices, label="Vælg art")
cover_input = gr.Number(label="Dækningsgrad (%)", minimum=0, maximum=100)
with gr.Row():
add_btn = gr.Button("Tilføj")
reset_btn = gr.Button("Nulstil")
list_display = gr.JSON(label="Artsliste")
calc_btn = gr.Button("Beregn")
results = gr.JSON(label="Resultater")
def reset_dict():
return {}, {}, {}
add_btn.click(
add_entry,
inputs=[species_input, cover_input, current_dict],
outputs=[current_dict, list_display],
show_api=False
)
reset_btn.click(
reset_dict,
inputs=[],
outputs=[current_dict, list_display, results],
show_api=False
)
calc_btn.click(
gradio_predict,
inputs=[current_dict],
outputs=results,
show_api=False
)
gr.Markdown("App og model af Kenneth Thorø Martinsen ([email protected]).")
with gr.Tab(label="Dokumentation"):
gr.Markdown("## Eksempel på brug af API")
gr.Markdown(f"API dokumentation kan findes på [{URL}/docs]({URL}/docs)")
gr.Markdown("### Python")
gr.Code(f"""
import requests
import json
data = {{
"species": {{
6458: 25.0,
4158: 15.5,
7208: 10.0
}}
}}
response = requests.post("{URL}/dvpi", json=data)
print(response.json())
""")
gr.Markdown("### R")
gr.Code(f"""
library(httr)
library(jsonlite)
data <- list(species = list(
6458 = 25.0,
4158 = 15.5,
7208 = 10.0
))
response <- POST("{URL}/dvpi",
body = toJSON(data, auto_unbox = TRUE),
content_type("application/json"))
print(fromJSON(rawToChar(response$content)))
""")
# Mount Gradio app
app = gr.mount_gradio_app(app, io, path="/")
|