UniVTG / main /_train_qfvs.py
KevinQHLin's picture
Upload 60 files
9d0a4ae
raw
history blame
12.7 kB
import os
import pdb
import time
import json
import pprint
import random
import importlib
import numpy as np
from tqdm import tqdm, trange
from collections import defaultdict
import h5py
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import sys
sys.path.append('/data/home/qinghonglin/univtg')
from main.config import BaseOptions, setup_model
from main.dataset import DatasetQFVS, prepare_batch_inputs_qfvs, start_end_collate_qfvs
from utils.basic_utils import set_seed, AverageMeter, dict_to_markdown, save_json, save_jsonl, load_json, load_pickle
from utils.model_utils import count_parameters
from eval.qfvs import calculate_semantic_matching, load_videos_tag
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(format="%(asctime)s.%(msecs)03d:%(levelname)s:%(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=logging.INFO)
def eval_epoch(model, config, opt):
model.eval()
f1_sum = 0; p_sum = 0; r_sum = 0
assert len(config['test_videos']) == 1
video_id = config['test_videos'][0]
embedding = load_pickle(f"./data/qfvs/txt_clip/{config['txt_feature']}.pkl")
feat_type = config['vid_feature']
feat = h5py.File(f'./data/qfvs/processed/P0{video_id}_{feat_type}.h5', 'r')
features = torch.tensor(feat['feature'][()]).unsqueeze(0).cuda()
# pdb.set_trace()
# seg_len = torch.tensor(feat['seg_len'][()]).unsqueeze(0).cuda()
# dim = features.shape[-1]
# ctx_l = seg_len.sum().cpu()
dim = features.shape[-1]
ctx_l = features.shape[1]
seg_len = torch.ones(ctx_l)
features = features.reshape(-1, dim)[:ctx_l]
tef_st = torch.arange(0, ctx_l, 1.0) / ctx_l
tef_ed = tef_st + 1.0 / ctx_l
tef = torch.stack([tef_st, tef_ed], dim=1).cuda() # (Lv, 2)
features = torch.cat([features, tef], dim=1) # (Lv, Dv+2)
transfer = {"Cupglass": "Glass",
"Musicalinstrument": "Instrument",
"Petsanimal": "Animal"}
for _,_,files in os.walk("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)):
evaluation_num=len(files)
for file in files:
summaries_GT=[]
with open("./data/qfvs/metadata/origin_data/Query-Focused_Summaries/Oracle_Summaries/P0"+str(video_id)+"/"+file,"r") as f:
for line in f.readlines():
summaries_GT.append(int(line.strip()))
concept1, concept2 = file.split('_')[0:2]
##############
if concept1 in transfer:
concept1 = transfer[concept1]
if concept2 in transfer:
concept2 = transfer[concept2]
concept1 = embedding[concept1]
concept2 = embedding[concept2]
data = {
'features':features,
'seg_len': seg_len,
'tokens_pad1':torch.from_numpy(concept1),
'tokens_pad2':torch.from_numpy(concept2),
}
input1, input2, input_oracle, mask = prepare_batch_inputs_qfvs(start_end_collate_qfvs([data]), config, eval=True)
summaries_GT = [x - 1 for x in summaries_GT]
video_shots_tag = load_videos_tag(mat_path="./eval/Tags.mat")
output_type = 'pred_logits' # only saliency.
# if opt.f_loss_coef == 0:
# output_type = 'saliency_scores' # only saliency.
# elif opt.s_loss_intra_coef == 0:
# output_type = 'pred_logits' # cls is default.
# else:
# output_type = ['pred_logits', 'saliency_scores']
# if opt.qfvs_score_multiple > 0:
# output_type = ['pred_logits', 'saliency_scores']
with torch.no_grad():
if not isinstance(output_type, list):
score1 = model(**input1)[output_type].squeeze()
# score1 = score1.masked_select(mask)
score2 = model(**input2)[output_type].squeeze()
# score2 = score2.masked_select(mask)
score = model(**input_oracle)[output_type].squeeze()
# score = score.masked_select(mask)
else:
score1, score2, score = torch.zeros((int(mask.sum().item()))).cuda(), torch.zeros((int(mask.sum().item()))).cuda(), torch.zeros((int(mask.sum().item()))).cuda()
for output_t in output_type:
# score1 *= model(**input1)[output_t].squeeze() #.masked_select(mask)
# score2 *= model(**input2)[output_t].squeeze() #.masked_select(mask)
# score *= model(**input_oracle)[output_t].squeeze() #.masked_select(mask)
score1 += model(**input1)[output_t].squeeze() #.masked_select(mask)
score2 += model(**input2)[output_t].squeeze() #.masked_select(mask)
score += model(**input_oracle)[output_t].squeeze() #.masked_select(mask)
score = score
# score = score + score1 + score2
# since video4 features dim is greater than video_shots_tag.
score = score[:min(score.shape[0], video_shots_tag[video_id-1].shape[0])]
_, top_index = score.topk(int(score.shape[0] * config["top_percent"]))
p, r, f1 = calculate_semantic_matching(list(top_index.cpu().numpy()), summaries_GT, video_shots_tag, video_id=video_id-1)
f1_sum+=f1; r_sum+=r; p_sum+=p
return {'F': round(100* f1_sum/evaluation_num,2) ,
'R': round(100* r_sum/evaluation_num,2) ,
'P': round(100* p_sum/evaluation_num,2) }
def train_epoch(model, criterion, train_loader, optimizer, opt, config, epoch_i, tb_writer):
model.train()
criterion.train()
# init meters
time_meters = defaultdict(AverageMeter)
loss_meters = defaultdict(AverageMeter)
timer_dataloading = time.time()
loss_total = 0
# optimizer.zero_grad()
for batch_idx, batch in enumerate(tqdm(train_loader)):
time_meters["dataloading_time"].update(time.time() - timer_dataloading)
timer_start = time.time()
model_input1, model_input2, model_input_oracle, \
model_gt1, model_gt2, model_gt_oracle, \
mask_GT = prepare_batch_inputs_qfvs(batch, config)
time_meters["prepare_inputs_time"].update(time.time() - timer_start)
timer_start = time.time()
output1 = model(**model_input1)
output2 = model(**model_input2)
output_oracle = model(**model_input_oracle)
loss_dict = {}
loss_dict1 = criterion(output1, model_gt1)
loss_dict2 = criterion(output2, model_gt2)
loss_dict3 = criterion(output_oracle, model_gt_oracle)
weight_dict = criterion.weight_dict
for k in loss_dict1.keys():
loss_dict[k] = loss_dict1[k] + loss_dict2[k] + loss_dict3[k]
# print(loss_dict)
losses = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
loss_total += losses.item()
time_meters["model_forward_time"].update(time.time() - timer_start)
timer_start = time.time()
# optimizer.zero_grad()
optimizer.zero_grad()
losses.backward()
if opt.grad_clip > 0:
nn.utils.clip_grad_norm_(model.parameters(), opt.grad_clip)
# if ((batch_idx + 1) % opt.bsz==0) or (batch_idx == len(train_loader)-1):
# pdb.set_trace()
# optimizer.step()
# optimizer.zero_grad()
optimizer.step()
time_meters["model_backward_time"].update(time.time() - timer_start)
timer_dataloading = time.time()
return round(loss_total / len(train_loader), 2)
# train in single domain.
def train(model, criterion, optimizer, lr_scheduler, train_loader, opt, config):
if opt.device.type == "cuda":
logger.info("CUDA enabled.")
model.to(opt.device)
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
tb_writer.add_text("hyperparameters", dict_to_markdown(vars(opt), max_str_len=None))
opt.train_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str}\n"
opt.eval_log_txt_formatter = "{time_str} [Epoch] {epoch:03d} [Loss] {loss_str} [Metrics] {eval_metrics_str}\n"
prev_best_score = {'Fscore':0, 'Precision':0, 'Recall':0}
if opt.start_epoch is None:
start_epoch = -1 if opt.eval_init else 0
else:
start_epoch = opt.start_epoch
val_score = eval_epoch(model, config, opt)
tb_writer.add_scalar(f"Eval/QFVS-V{config['test_videos'][0]}-fscore", float(val_score['F']), 0)
logger.info(f"[Epoch {0}] [Fscore: {val_score['F']} / {prev_best_score['Fscore']}]"
f" [Precision: {val_score['P']} / {prev_best_score['Precision']}]"
f" [Recall: {val_score['R']} / {prev_best_score['Recall']}]")
for epoch_i in trange(start_epoch, opt.n_epoch, desc="Epoch"):
if epoch_i > -1:
loss_epoch = train_epoch(model, criterion, train_loader, optimizer, opt, config, epoch_i, tb_writer)
lr_scheduler.step()
eval_epoch_interval = opt.eval_epoch
if opt.eval_path is not None and (epoch_i + 1) % eval_epoch_interval == 0:
with torch.no_grad():
val_score = eval_epoch(model, config, opt)
tb_writer.add_scalar(f"Eval/QFVS-V{config['test_videos'][0]}-fscore", float(val_score['F']), epoch_i+1)
logger.info(f"[Epoch {epoch_i + 1}, Loss {loss_epoch}] [Fscore: {val_score['F']} / {prev_best_score['Fscore']}]"
f" [Precision: {val_score['P']} / {prev_best_score['Precision']}]"
f" [Recall: {val_score['R']} / {prev_best_score['Recall']}]")
if prev_best_score['Fscore'] < val_score['F']:
prev_best_score['Fscore'] = val_score['F']
prev_best_score['Precision'] = val_score['P']
prev_best_score['Recall'] = val_score['R']
checkpoint = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"epoch": epoch_i,
"opt": opt
}
torch.save(checkpoint, opt.ckpt_filepath.replace(".ckpt", f"_V{config['test_videos'][0]}_best.ckpt"))
tb_writer.close()
return prev_best_score
def start_training():
logger.info("Setup config, data and model...")
opt = BaseOptions().parse()
set_seed(opt.seed)
config = load_json("./main/config_qfvs.json")
tb_writer = SummaryWriter(opt.tensorboard_log_dir)
# key -> test video; value -> training videos.
qfvs_split = {1: [2, 3, 4],
2: [1, 3, 4],
3: [1, 2, 4],
4: [1, 2, 3]}
# qfvs_split = {
# 2: [1, 3, 4],
# 3: [1, 2, 4],
# }
scores_videos = {}
for test_id, splits in qfvs_split.items():
logger.info(f"Start Training {opt.dset_name}: {test_id}")
config['train_videos'] = qfvs_split[test_id]
config['test_videos'] = [test_id]
train_dataset = DatasetQFVS(config)
train_loader = DataLoader(train_dataset, batch_size=opt.bsz, collate_fn=start_end_collate_qfvs, shuffle=True, num_workers=opt.num_workers)
model, criterion, optimizer, lr_scheduler = setup_model(opt)
count_parameters(model)
best_score = train(model, criterion, optimizer, lr_scheduler, train_loader, opt, config)
scores_videos['V'+str(test_id)] = best_score
# save the final results.
avg_fscore = sum([v['Fscore'] for k, v in scores_videos.items()]) / len(scores_videos)
avg_precision = sum([v['Precision'] for k, v in scores_videos.items()]) / len(scores_videos)
avg_recall = sum([v['Recall'] for k, v in scores_videos.items()]) / len(scores_videos)
scores_videos['avg'] = {'Fscore':avg_fscore, 'Precision':avg_precision, 'Recall':avg_recall}
save_metrics_path = os.path.join(opt.results_dir, f"best_{opt.dset_name}_{opt.eval_split_name}_preds_metrics.json")
save_json( scores_videos, save_metrics_path, save_pretty=True, sort_keys=False)
tb_writer.add_scalar(f"Eval/QFVS-avg-fscore", round(avg_fscore, 2), 1)
tb_writer.add_text(f"Eval/QFVS-{opt.dset_name}", dict_to_markdown(scores_videos, max_str_len=None))
tb_writer.close()
print(scores_videos)
return
if __name__ == '__main__':
start_training()
results = logger.info("\n\n\nFINISHED TRAINING!!!")