# from flask import Flask, request | |
# from transformers import AutoModelForImageClassification | |
# from transformers import AutoImageProcessor | |
# from PIL import Image | |
# import torch | |
# app = Flask(__name__) | |
# model = AutoModelForImageClassification.from_pretrained( | |
# './myModel') | |
# image_processor = AutoImageProcessor.from_pretrained( | |
# "google/vit-base-patch16-224-in21k") | |
# @app.route('/upload_image', methods=['POST']) | |
# def upload_image(): | |
# # Get the image file from the request | |
# image_file = request.files['image'] | |
# # Save the image file to a desired location on the server | |
# image_path = "assets/img.jpg" | |
# image_file.save(image_path) | |
# # You can perform additional operations with the image here | |
# # ... | |
# return 'Image uploaded successfully' | |
# @app.route('/get_text', methods=['GET']) | |
# def get_text(): | |
# image = Image.open('assets/img.jpg') | |
# inputs = image_processor(image, return_tensors="pt") | |
# with torch.no_grad(): | |
# logits = model(**inputs).logits | |
# predicted_label = logits.argmax(-1).item() | |
# disease = model.config.id2label[predicted_label] | |
# return disease | |
# if __name__ == '__app__': | |
# app.run( host='192.168.1.1',port=8080) | |