Spaces:
Runtime error
Runtime error
import supabase | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import gradio as gr | |
import io | |
client = supabase.create_client( | |
"https://uddbzgupnpujsabrgbyk.supabase.co", | |
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6InVkZGJ6Z3VwbnB1anNhYnJnYnlrIiwicm9sZSI6InNlcnZpY2Vfcm9sZSIsImlhdCI6MTcxODgxOTE3NywiZXhwIjoyMDM0Mzk1MTc3fQ.OH-NJ64dHhr0WPMZU05TsSBfRkoiX29W_cFHYqnN0us" | |
) | |
def read_data(): | |
response = client.table('Plant Growth Analysis').select("*").execute() | |
df = pd.DataFrame(response.data) | |
return df | |
df = read_data() | |
#df.head() | |
# Convert LoyaltyProgram to categorical | |
#df['Growth_Milestone'] = df['Growth_Milestone'].map({0: 'No', 1: 'Yes'}) | |
# Function to create histogram | |
def create_histogram(column): | |
plt.figure(figsize=(10, 6)) | |
sns.histplot(data=df, x=column, kde=True) | |
plt.title(f'Histogram of {column}') | |
plt.xlabel(column) | |
plt.ylabel('Count') | |
return plt | |
# Function to create scatter plot | |
def create_scatter(x_column, y_column, hue_column): | |
plt.figure(figsize=(10, 6)) | |
sns.scatterplot(data=df, x=x_column, y=y_column, hue=hue_column) | |
plt.title(f'{x_column} vs {y_column} (colored by {hue_column})') | |
plt.xlabel(x_column) | |
plt.ylabel(y_column) | |
return plt | |
# Function to create box plot | |
def create_boxplot(x_column, y_column): | |
plt.figure(figsize=(10, 6)) | |
sns.boxplot(data=df, x=x_column, y=y_column) | |
plt.title(f'Box Plot of {y_column} by {x_column}') | |
plt.xlabel(x_column) | |
plt.ylabel(y_column) | |
return plt | |
# Function to create bar plot | |
def create_barplot(x_column, y_column): | |
plt.figure(figsize=(10, 6)) | |
sns.barplot(data=df, x=x_column, y=y_column) | |
plt.title(f'Bar Plot of {y_column} by {x_column}') | |
plt.xlabel(x_column) | |
plt.ylabel(y_column) | |
plt.xticks(rotation=45) | |
return plt | |
#Function to create Line Plot | |
def create_lineplot(x_column, y_column): | |
plt.figure(figsize=(10, 6)) | |
sns.lineplot(data=df,x=x_column, y=y_column) | |
plt.title(f'Line Plot of {y_column} vs {x_column}') | |
plt.xlabel(x_column) | |
plt.ylabel(y_column) | |
return plt | |
# Gradio interface | |
def visualize(plot_type, x_column, y_column, hue_column): | |
if plot_type == "Histogram": | |
return create_histogram(x_column) | |
elif plot_type == "Scatter Plot": | |
return create_scatter(x_column, y_column, hue_column) | |
elif plot_type == "Box Plot": | |
return create_boxplot(x_column, y_column) | |
elif plot_type == "Bar Plot": | |
return create_barplot(x_column, y_column) | |
elif plot_type == "Line Plot": | |
return create_lineplot(x_column, y_column) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=visualize, | |
inputs=[ | |
gr.Dropdown(["Histogram", "Scatter Plot", "Box Plot", "Bar Plot","Line Plot"], label="Plot Type"), | |
gr.Dropdown(df.columns.tolist(), label="X-axis"), | |
gr.Dropdown(df.columns.tolist(), label="Y-axis"), | |
gr.Dropdown(df.columns.tolist(), label="Hue (for Scatter Plot/Line Plot)") | |
], | |
outputs="plot", | |
title="Plant Growth Data Visualization Dashboard", | |
description="This dashboard displays various visualizations of the plant growth dataset.", | |
) | |
# Launch the interface | |
iface.launch() | |