Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,22 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
import streamlit as st
|
|
|
|
|
|
|
4 |
from groq import Groq
|
5 |
from diffusers import AutoPipelineForText2Image
|
6 |
-
import tempfile
|
7 |
-
import soundfile as sf
|
8 |
|
9 |
# Load API keys
|
10 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
11 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
12 |
|
13 |
-
# Initialize Groq client
|
14 |
client = Groq(api_key=GROQ_API_KEY)
|
15 |
|
16 |
-
# Load
|
17 |
-
|
18 |
-
|
19 |
-
)
|
20 |
-
image_gen.to("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
|
22 |
-
# Function to transcribe
|
23 |
def transcribe(audio_path):
|
24 |
with open(audio_path, "rb") as file:
|
25 |
transcription = client.audio.transcriptions.create(
|
@@ -30,21 +27,21 @@ def transcribe(audio_path):
|
|
30 |
)
|
31 |
return transcription["text"]
|
32 |
|
33 |
-
# Function to translate Tamil to English
|
34 |
def translate_text(tamil_text):
|
35 |
response = client.chat.completions.create(
|
36 |
model="gemma-7b-it",
|
37 |
messages=[{"role": "user", "content": f"Translate this Tamil text to English: {tamil_text}"}]
|
38 |
)
|
39 |
-
return response.choices[0].
|
40 |
|
41 |
-
# Function to generate text
|
42 |
def generate_text(prompt):
|
43 |
response = client.chat.completions.create(
|
44 |
model="deepseek-coder-r1-7b",
|
45 |
messages=[{"role": "user", "content": f"Write a short story about: {prompt}"}]
|
46 |
)
|
47 |
-
return response.choices[0].
|
48 |
|
49 |
# Function to generate an image
|
50 |
def generate_image(prompt):
|
@@ -54,36 +51,37 @@ def generate_image(prompt):
|
|
54 |
# Streamlit UI
|
55 |
st.title("Tamil Speech to Image & Story Generator")
|
56 |
|
57 |
-
#
|
58 |
-
st.
|
59 |
-
recorded_audio = st.audio("", format='audio/wav', start_time=0)
|
60 |
-
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a"])
|
61 |
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
-
if
|
65 |
-
|
66 |
-
temp_audio.write(uploaded_file.read())
|
67 |
-
audio_path = temp_audio.name
|
68 |
-
elif recorded_audio:
|
69 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio:
|
70 |
audio_data, samplerate = sf.read(recorded_audio)
|
71 |
-
|
72 |
-
audio_path
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
st.subheader("Tamil Transcription")
|
85 |
st.write(tamil_text)
|
86 |
-
|
87 |
st.subheader("English Translation")
|
88 |
st.write(english_text)
|
89 |
|
@@ -91,4 +89,5 @@ if st.button("Generate") and audio_path:
|
|
91 |
st.write(story)
|
92 |
|
93 |
st.subheader("Generated Image")
|
94 |
-
st.image(image)
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import soundfile as sf
|
5 |
from groq import Groq
|
6 |
from diffusers import AutoPipelineForText2Image
|
|
|
|
|
7 |
|
8 |
# Load API keys
|
9 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
10 |
HF_API_KEY = os.getenv("HF_API_KEY")
|
11 |
|
12 |
+
# Initialize Groq client
|
13 |
client = Groq(api_key=GROQ_API_KEY)
|
14 |
|
15 |
+
# Load image generation model
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
image_gen = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo").to(device)
|
|
|
|
|
18 |
|
19 |
+
# Function to transcribe audio
|
20 |
def transcribe(audio_path):
|
21 |
with open(audio_path, "rb") as file:
|
22 |
transcription = client.audio.transcriptions.create(
|
|
|
27 |
)
|
28 |
return transcription["text"]
|
29 |
|
30 |
+
# Function to translate Tamil to English
|
31 |
def translate_text(tamil_text):
|
32 |
response = client.chat.completions.create(
|
33 |
model="gemma-7b-it",
|
34 |
messages=[{"role": "user", "content": f"Translate this Tamil text to English: {tamil_text}"}]
|
35 |
)
|
36 |
+
return response.choices[0].message.content
|
37 |
|
38 |
+
# Function to generate text
|
39 |
def generate_text(prompt):
|
40 |
response = client.chat.completions.create(
|
41 |
model="deepseek-coder-r1-7b",
|
42 |
messages=[{"role": "user", "content": f"Write a short story about: {prompt}"}]
|
43 |
)
|
44 |
+
return response.choices[0].message.content
|
45 |
|
46 |
# Function to generate an image
|
47 |
def generate_image(prompt):
|
|
|
51 |
# Streamlit UI
|
52 |
st.title("Tamil Speech to Image & Story Generator")
|
53 |
|
54 |
+
# Choose input method
|
55 |
+
input_method = st.radio("Choose Input Method:", ("Record Audio", "Upload Audio"))
|
|
|
|
|
56 |
|
57 |
+
if input_method == "Record Audio":
|
58 |
+
recorded_audio = st.audio(st.file_uploader("Record your Tamil speech", type=["wav", "mp3"]))
|
59 |
+
elif input_method == "Upload Audio":
|
60 |
+
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3"])
|
61 |
|
62 |
+
if st.button("Generate"):
|
63 |
+
if input_method == "Record Audio" and recorded_audio:
|
|
|
|
|
|
|
|
|
64 |
audio_data, samplerate = sf.read(recorded_audio)
|
65 |
+
audio_path = "recorded_audio.wav"
|
66 |
+
sf.write(audio_path, audio_data, samplerate)
|
67 |
+
elif input_method == "Upload Audio" and uploaded_file:
|
68 |
+
audio_path = "uploaded_audio.wav"
|
69 |
+
with open(audio_path, "wb") as f:
|
70 |
+
f.write(uploaded_file.getbuffer())
|
71 |
+
else:
|
72 |
+
st.error("Please provide an audio file.")
|
73 |
+
st.stop()
|
74 |
+
|
75 |
+
# Process audio
|
76 |
+
tamil_text = transcribe(audio_path)
|
77 |
+
english_text = translate_text(tamil_text)
|
78 |
+
story = generate_text(english_text)
|
79 |
+
image = generate_image(english_text)
|
80 |
+
|
81 |
+
# Display results
|
82 |
st.subheader("Tamil Transcription")
|
83 |
st.write(tamil_text)
|
84 |
+
|
85 |
st.subheader("English Translation")
|
86 |
st.write(english_text)
|
87 |
|
|
|
89 |
st.write(story)
|
90 |
|
91 |
st.subheader("Generated Image")
|
92 |
+
st.image(image, caption="Generated Image")
|
93 |
+
|