LLM-as-a-judge / app.py
Kolumbus Lindh
updates
1de90bd
raw
history blame
3.48 kB
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Load LoRA-4100 model for evaluation
def load_lora_model():
repo_id = "KolumbusLindh/LoRA-4100"
model_file = "unsloth.F16.gguf"
local_path = hf_hub_download(repo_id=repo_id, filename=model_file)
print(f"Loading LoRA model from: {local_path}")
return Llama(model_path=local_path, n_ctx=2048, n_threads=8)
lora_model = load_lora_model()
print("LoRA model loaded successfully!")
# Load user-specified model
def load_user_model(model_path):
print(f"Loading user model from: {model_path}")
return Llama(model_path=model_path, n_ctx=2048, n_threads=8)
# Generate response using a specified model and prompt
def generate_response(model_path, prompt):
user_model = load_user_model(model_path)
response = user_model(prompt, max_tokens=256, temperature=0.7)
return response["choices"][0]["text"]
# Evaluate responses using the LoRA model
def evaluate_responses(prompt, model_a_path, model_b_path, evaluation_criteria):
# Generate responses
response_a = generate_response(model_a_path, prompt)
response_b = generate_response(model_b_path, prompt)
# Format the evaluation prompt
evaluation_prompt = [
{"role": "system", "content": "You are an objective and thorough evaluator of instruction-based responses."},
{"role": "user", "content": f"""
Prompt: {prompt}
Response A: {response_a}
Response B: {response_b}
Please evaluate both responses based on the following criteria: {evaluation_criteria}
For each criterion, provide a rating of the responses on a scale from 1 to 10, and explain why each response earned that rating. Then, declare a winner (or 'draw' if both are equal).
"""}
]
# Generate the evaluation
evaluation_response = lora_model.create_chat_completion(
messages=evaluation_prompt,
max_tokens=512,
temperature=0.5
)
evaluation_results = evaluation_response['choices'][0]['message']['content']
return evaluation_results
# Gradio interface
with gr.Blocks(title="LLM as a Judge") as demo:
gr.Markdown("## LLM as a Judge 🧐")
# Inputs for model paths, prompt, and evaluation criteria
model_a_input = gr.Textbox(label="Model A Path or URL", placeholder="Enter the path or URL to Model A...")
model_b_input = gr.Textbox(label="Model B Path or URL", placeholder="Enter the path or URL to Model B...")
prompt_input = gr.Textbox(label="Enter the Prompt", placeholder="Enter the prompt here...", lines=3)
# Dropdown for evaluation criteria
criteria_dropdown = gr.Dropdown(
label="Select Evaluation Criteria",
choices=["Clarity", "Completeness", "Accuracy", "Relevance", "User-Friendliness", "Depth", "Creativity"],
value="Clarity",
type="value"
)
# Button to evaluate responses
evaluate_button = gr.Button("Evaluate Models")
# Output for evaluation results
evaluation_output = gr.Textbox(
label="Evaluation Results",
placeholder="The evaluation results will appear here...",
lines=10,
interactive=False
)
# Link evaluation function to the button
evaluate_button.click(
fn=evaluate_responses,
inputs=[prompt_input, model_a_input, model_b_input, criteria_dropdown],
outputs=[evaluation_output]
)
# Launch the app
if __name__ == "__main__":
demo.launch()