LLM-as-a-judge / app.py
Kolumbus Lindh
updates
8f23865
raw
history blame
4.24 kB
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Function to load a user-specified model from Hugging Face
def load_user_model(repo_id, model_file):
print(f"Downloading model {model_file} from repository {repo_id}...")
local_path = hf_hub_download(repo_id=repo_id, filename=model_file)
print(f"Model downloaded to: {local_path}")
return Llama(model_path=local_path, n_ctx=2048, n_threads=8)
# Generate a response using the specified model and prompt
def generate_response(model, prompt):
response = model(prompt, max_tokens=256, temperature=0.7)
return response["choices"][0]["text"]
# Evaluate responses generated by two models using the LoRA evaluation model
def evaluate_responses(prompt, repo_a, model_a, repo_b, model_b, evaluation_criteria):
# Load user-specified models
model_a_instance = load_user_model(repo_a, model_a)
model_b_instance = load_user_model(repo_b, model_b)
# Generate responses
response_a = generate_response(model_a_instance, prompt)
response_b = generate_response(model_b_instance, prompt)
print(f"Response A: {response_a}")
print(f"Response B: {response_b}")
# Format the evaluation prompt for the LoRA model
evaluation_prompt = f"""
Prompt: {prompt}
Response A: {response_a}
Response B: {response_b}
Evaluation Criteria: {evaluation_criteria}
Please evaluate the responses based on the criteria above. Rate each response on a scale from 1 to 10 for each criterion and provide a detailed explanation. Finally, declare a winner or state 'draw' if they are equal.
"""
# Use the LoRA model to evaluate the responses
evaluation_response = lora_model.create_completion(
prompt=evaluation_prompt,
max_tokens=512,
temperature=0.5
)
return evaluation_response["choices"][0]["text"]
# Load the base LoRA evaluation model
def load_lora_model():
repo_id = "KolumbusLindh/LoRA-4100"
model_file = "unsloth.F16.gguf"
print(f"Downloading LoRA evaluation model from repository {repo_id}...")
local_path = hf_hub_download(repo_id=repo_id, filename=model_file)
print(f"LoRA evaluation model downloaded to: {local_path}")
return Llama(model_path=local_path, n_ctx=2048, n_threads=8)
lora_model = load_lora_model()
print("LoRA evaluation model loaded successfully!")
# Gradio interface
with gr.Blocks(title="LLM as a Judge") as demo:
gr.Markdown("## LLM as a Judge 🧐")
# Inputs for Model A repository and file
repo_a_input = gr.Textbox(label="Model A Repository (e.g., KolumbusLindh/LoRA-4100)", placeholder="Enter the Hugging Face repo name for Model A...")
model_a_input = gr.Textbox(label="Model A File Name (e.g., unsloth.F16.gguf)", placeholder="Enter the model filename for Model A...")
# Inputs for Model B repository and file
repo_b_input = gr.Textbox(label="Model B Repository (e.g., KolumbusLindh/LoRA-4100)", placeholder="Enter the Hugging Face repo name for Model B...")
model_b_input = gr.Textbox(label="Model B File Name (e.g., unsloth.F16.gguf)", placeholder="Enter the model filename for Model B...")
# Input for prompt and evaluation criteria
prompt_input = gr.Textbox(label="Enter Prompt", placeholder="Enter the prompt here...", lines=3)
criteria_dropdown = gr.Dropdown(
label="Select Evaluation Criteria",
choices=["Clarity", "Completeness", "Accuracy", "Relevance", "User-Friendliness", "Depth", "Creativity"],
value="Clarity",
type="value"
)
# Button to evaluate responses
evaluate_button = gr.Button("Evaluate Models")
# Output for evaluation results
evaluation_output = gr.Textbox(
label="Evaluation Results",
placeholder="The evaluation results will appear here...",
lines=10,
interactive=False
)
# Link the evaluation function to the button
evaluate_button.click(
fn=evaluate_responses,
inputs=[prompt_input, repo_a_input, model_a_input, repo_b_input, model_b_input, criteria_dropdown],
outputs=[evaluation_output]
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch() # Add share=True to create a public link