Spaces:
Sleeping
Sleeping
File size: 8,797 Bytes
e57a5af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import gradio as gr
import torch
from transformers import TableTransformerForObjectDetection
import matplotlib.pyplot as plt
from transformers import DetrFeatureExtractor
import pandas as pd
import uuid
from surya.ocr import run_ocr
# from surya.model.detection.segformer import load_model as load_det_model, load_processor as load_det_processor
from surya.model.detection.model import load_model as load_det_model, load_processor as load_det_processor
from surya.model.recognition.model import load_model as load_rec_model
from surya.model.recognition.processor import load_processor as load_rec_processor
from PIL import ImageDraw, Image
import os
from pdf2image import convert_from_path
import tempfile
from ultralyticsplus import YOLO, render_result
import cv2
import numpy as np
from fpdf import FPDF
def convert_pdf_images(pdf_path):
# Convert PDF to images
images = convert_from_path(pdf_path)
# Save each page as a temporary image and collect file paths
temp_file_paths = []
for i, page in enumerate(images):
# Create a temporary file with a unique name
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
page.save(temp_file.name, 'PNG') # Save the image to the temporary file
temp_file_paths.append(temp_file.name) # Add file path to the list
return temp_file_paths[0] # Return the list of temporary file paths
# Load model
model_yolo = YOLO('keremberke/yolov8m-table-extraction')
# Set model parameters
model_yolo.overrides['conf'] = 0.25 # NMS confidence threshold
model_yolo.overrides['iou'] = 0.45 # NMS IoU threshold
model_yolo.overrides['agnostic_nms'] = False # NMS class-agnostic
model_yolo.overrides['max_det'] = 1000 # maximum number of detections per image
def resize_image(image, max_dimension=4200, min_dimension=50):
width, height = image.size
# Check if the dimensions are within range
if width > max_dimension or height > max_dimension or width < min_dimension or height < min_dimension:
scaling_factor = min(max_dimension / max(width, height), min_dimension / min(width, height))
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return image.resize((new_width, new_height), Image.Resampling.LANCZOS)
return image
def crop_table(filename):
# Set image
image_path = filename
image = Image.open(image_path)
image_np = np.array(image)
# Perform inference
results = model_yolo.predict(image_path)
# Extract the first bounding box (assuming there's only one table)
bbox = results[0].boxes[0]
x1, y1, x2, y2 = map(int, bbox.xyxy[0]) # Get the bounding box coordinates
# Crop the image using the bounding box coordinates
cropped_image = image_np[y1:y2, x1:x2]
# Convert the cropped image to RGB (if it's not already in RGB)
cropped_image_rgb = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2RGB)
# Save the cropped image as a PDF
cropped_image_pil = Image.fromarray(cropped_image_rgb)
# Save the cropped image to a temporary file
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
cropped_image_pil.save(temp_file.name)
return temp_file.name
# new v1.1 checkpoints require no timm anymore
device = "cuda" if torch.cuda.is_available() else "cpu"
langs = ["en","th"] # Replace with your languages - optional but recommended
det_processor, det_model = load_det_processor(), load_det_model()
rec_model, rec_processor = load_rec_model(), load_rec_processor()
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933]]
feature_extractor = DetrFeatureExtractor()
model = TableTransformerForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition-v1.1-all")
def compute_boxes(image_path):
image = Image.open(image_path).convert("RGB")
width, height = image.size
encoding = feature_extractor(image, return_tensors="pt")
with torch.no_grad():
outputs = model(**encoding)
results = feature_extractor.post_process_object_detection(outputs, threshold=0.7, target_sizes=[(height, width)])[0]
boxes = results['boxes'].tolist()
labels = results['labels'].tolist()
return boxes,labels
def extract_table(image_path):
image = Image.open(image_path)
boxes,labels = compute_boxes(image_path)
cropped_table_visualized = image.copy()
draw = ImageDraw.Draw(cropped_table_visualized)
for cell in boxes:
draw.rectangle(cell, outline="red")
bbox_table = f"{str(uuid.uuid4())}.png"
cropped_table_visualized.save(bbox_table)
cell_locations = []
for box_row, label_row in zip(boxes, labels):
if label_row == 2:
for box_col, label_col in zip(boxes, labels):
if label_col == 1:
cell_box = (box_col[0], box_row[1], box_col[2], box_row[3])
cell_locations.append(cell_box)
cell_locations.sort(key=lambda x: (x[1], x[0]))
num_columns = 0
box_old = cell_locations[0]
for box in cell_locations[1:]:
x1, y1, x2, y2 = box
x1_old, y1_old, x2_old, y2_old = box_old
num_columns += 1
if y1 > y1_old:
break
box_old = box
headers = []
for box in cell_locations[:num_columns]:
x1, y1, x2, y2 = box
cell_image = resize_image(image.crop((x1, y1, x2, y2)))
# new_width = cell_image.width *4
# new_height = cell_image.height *4
# cell_image = cell_image.resize((new_width, new_height), resample=Image.LANCZOS)
# cell_text = pytesseract.image_to_string(cell_image, lang='tha+eng')
# print(cell_text)
plt.figure()
plt.imshow(cell_image)
plt.axis("off")
plt.title("Cropped Cell Image")
plt.show()
predictions = run_ocr([cell_image], [langs], det_model, det_processor, rec_model, rec_processor)
texts = [line.text for line in predictions[0].text_lines]
all_text = ' '.join(texts)
print(all_text)
if all_text:
headers.append(all_text)
else:
headers.append('')
df = pd.DataFrame(columns=headers)
row = []
for box in cell_locations[num_columns:]:
x1, y1, x2, y2 = box
cell_image = resize_image(image.crop((x1, y1, x2, y2)))
# new_width = cell_image.width * 4
# new_height = cell_image.height * 4
# cell_image = cell_image.resize((new_width, new_height), resample=Image.LANCZOS)
# cell_text = pytesseract.image_to_string(cell_image, lang='tha+eng')
# print(cell_text)
plt.figure()
plt.imshow(cell_image)
plt.axis("off")
plt.title("Cropped Cell Image")
plt.show()
predictions = run_ocr([cell_image], [langs], det_model, det_processor, rec_model, rec_processor)
texts = [line.text for line in predictions[0].text_lines]
all_text = ''.join(texts)
print(all_text)
if all_text:
headers.append(all_text)
else:
headers.append('')
row.append(all_text)
if len(row) == num_columns:
df.loc[len(df)] = row
print(row)
row = []
filepath = f"{str(uuid.uuid4())}.csv"
df.to_csv(filepath, index=False)
return filepath, bbox_table
# Function to process the uploaded file
def process_file(uploaded_file):
images_table = convert_pdf_images(uploaded_file)
croped_table = crop_table(images_table)
filepath, bbox_table = extract_table(croped_table)
os.remove(images_table)
os.remove(croped_table)
return filepath, bbox_table # Return the file path for download
# Function to clear the inputs and outputs
def clear_inputs():
return None, None, None # Clear both input and output
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Upload a PDF, Process it, and Download the Processed File")
with gr.Row():
upload = gr.File(label="Upload PDF", type="filepath", file_types=[".pdf"])
download = gr.File(label="Download Processed PDF")
with gr.Row():
process_button = gr.Button("Process")
clear_button = gr.Button("Clear") # Custom clear button
image_display = gr.Image(label="Processed Image")
# Trigger the file processing with the button click
process_button.click(process_file, inputs=upload, outputs=[download, image_display])
# Trigger clearing inputs and outputs
clear_button.click(clear_inputs, inputs=None, outputs=[upload, download, image_display])
# Launch the interface
demo.launch()
# print(process_file("/content/give me a example table - give me a example table.pdf")) |