File size: 7,819 Bytes
49ce73b
 
 
 
 
 
 
 
f365e2e
49ce73b
 
 
 
 
 
 
2de3e63
49ce73b
 
2de3e63
49ce73b
 
 
 
 
 
2de3e63
49ce73b
 
 
 
 
 
 
 
2de3e63
49ce73b
 
2de3e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ce73b
 
 
 
 
2de3e63
49ce73b
 
 
 
 
 
 
 
 
 
 
 
2de3e63
49ce73b
 
 
2de3e63
49ce73b
 
 
 
2de3e63
49ce73b
 
 
 
 
 
 
2de3e63
49ce73b
 
 
2de3e63
49ce73b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2de3e63
49ce73b
 
 
 
 
2de3e63
49ce73b
 
2de3e63
49ce73b
 
 
 
 
 
2de3e63
49ce73b
 
 
 
 
 
 
 
 
 
 
 
 
 
2de3e63
49ce73b
 
 
2de3e63
49ce73b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import tempfile
import gradio as gr
from PIL import Image
from pdf2image import convert_from_path
import pytesseract
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from langchain_groq import ChatGroq

class ChatbotModel:
    def __init__(self):
        # Initialize the environment variable for the GROQ API Key
        os.environ["GROQ_API_KEY"] = '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'

        # Initialize embeddings
        self.embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-MiniLM-L6-v2",
            model_kwargs={'device': 'cpu'},
            encode_kwargs={'normalize_embeddings': True}
        )

        # Initialize the chat model
        self.llm = ChatGroq(
            model='llama3-70b-8192',
            temperature=0.5,
            max_tokens=None,
            timeout=None,
            max_retries=2,
        )

        # Initialize memory for conversation
        self.memory = ConversationBufferMemory(memory_key="history", input_key="question")

        # Create the QA chain prompt template
        self.template = """You are an intelligent educational assistant specialized in handling queries about documents in both English and Gujarati languages. You have been provided with OCR-processed text from {document_type} that contains important educational information.

        Core Responsibilities:
        1. Language Processing:
           - Identify the language of the user's query (English or Gujarati)
           - Respond in the same language as the query
           - If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology
           - For technical terms, provide both English and Gujarati versions when relevant

        2. Document Understanding:
           - Analyze the OCR-processed text from the uploaded {document_type}
           - Account for potential OCR errors or misinterpretations
           - Focus on extracting accurate information despite possible OCR imperfections

        3. Response Guidelines:
           - Provide direct, clear answers based solely on the document content
           - If information is unclear due to OCR quality, mention this limitation
           - For numerical data (dates, percentages, marks), double-check accuracy before responding
           - If information is not found in the document, clearly state: "This information is not present in the uploaded document"

        4. Educational Context:
           - Maintain focus on educational queries related to the document content
           - For admission-related queries, emphasize important deadlines and requirements
           - For scholarship information, highlight eligibility criteria and application processes
           - For course-related queries, provide detailed, accurate information from the document

        5. Response Format:
           - Structure responses clearly with relevant subpoints when necessary
           - For complex information, break down the answer into digestible parts
           - Include relevant reference points from the document when applicable
           - Format numerical data and dates clearly

        6. Quality Control:
           - Verify that responses align with the document content
           - Don't make assumptions beyond the provided information
           - If multiple interpretations are possible due to OCR quality, mention all possibilities
           - Maintain consistency in terminology throughout the conversation

        Important Rules:
        - Never make up information not present in the document
        - Don't combine information from previous conversations or external knowledge
        - Always indicate if certain parts of the document are unclear due to OCR quality
        - Maintain professional tone while being accessible to students and parents
        - If the query is out of scope of the uploaded document, politely redirect to relevant official sources

        Context from uploaded document:
        {context}

        Chat History:
        {history}

        Current Question: {question}
        Assistant: Let me provide a clear and accurate response based on the uploaded document content...
        """

        self.QA_CHAIN_PROMPT = PromptTemplate(
            input_variables=["history", "context", "question"],
            template=self.template
        )
        
        self.db1 = None
        self.qa_chain = None

    def ocr_image(self, image_path, language='eng+guj'):
        img = Image.open(image_path)
        return pytesseract.image_to_string(img, lang=language)

    def ocr_pdf(self, pdf_path, language='eng+guj'):
        images = convert_from_path(pdf_path)
        return "\n".join([pytesseract.image_to_string(img, lang=language) for img in images])

    def process_file(self, uploaded_file):
        """Process an uploaded file and initialize the QA chain."""
        _, file_extension = os.path.splitext(uploaded_file.name)
        file_extension = file_extension.lower()

        # Temporarily save the file for processing
        with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file:
            temp_file.write(uploaded_file.read())
            temp_path = temp_file.name

        # OCR processing based on file type
        if file_extension == '.pdf':
            raw_text = self.ocr_pdf(temp_path, language='guj+eng')
        elif file_extension in ['.jpg', '.jpeg', '.png', '.bmp']:
            raw_text = self.ocr_image(temp_path, language='guj+eng')
        else:
            return "Unsupported file format."

        # Split text into chunks
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
        text_chunks = text_splitter.split_text(raw_text)

        # Create vector store and initialize QA chain
        self.db1 = FAISS.from_documents(text_chunks, self.embeddings)
        self.qa_chain = RetrievalQA.from_chain_type(
            self.llm,
            retriever=self.db1.as_retriever(),
            chain_type='stuff',
            verbose=True,
            chain_type_kwargs={
                "verbose": True,
                "prompt": self.QA_CHAIN_PROMPT,
                "memory": self.memory
            }
        )
        return "File processed successfully!"

    def get_response(self, user_input):
        """Generate response to the user input question."""
        if not self.qa_chain:
            return "Please upload and process a file before asking questions."
        response = self.qa_chain({"query": user_input})
        return response["result"]

# Initialize the chatbot
chatbot = ChatbotModel()

# Define Gradio interface functions
def upload_and_process(file):
    return chatbot.process_file(file)

def ask_question(question):
    return chatbot.get_response(question)

# Set up Gradio interface
interface = gr.Blocks()

with interface:
    gr.Markdown("# Educational Chatbot with Document Analysis")
    with gr.Row():
        file_upload = gr.File(label="Upload PDF or Image")
        upload_btn = gr.Button("Process File")
    output = gr.Textbox(label="File Processing Status")

    with gr.Row():
        question_box = gr.Textbox(label="Ask a Question")
        ask_btn = gr.Button("Submit")
    answer = gr.Textbox(label="Answer")

    # Connect buttons to functions
    upload_btn.click(upload_and_process, inputs=file_upload, outputs=output)
    ask_btn.click(ask_question, inputs=question_box, outputs=answer)

# Launch Gradio interface
interface.launch()