|
import streamlit as st |
|
import os |
|
from PIL import Image |
|
import pytesseract |
|
from pdf2image import convert_from_path |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain.prompts import PromptTemplate |
|
from langchain.chains import RetrievalQA |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_groq import ChatGroq |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_core.vectorstores import VectorStoreRetriever |
|
|
|
|
|
os.environ["GROQ_API_KEY"] = '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' |
|
|
|
llm = ChatGroq( |
|
model='llama3-70b-8192', |
|
temperature=0.5, |
|
max_tokens=None, |
|
timeout=None, |
|
max_retries=2 |
|
) |
|
|
|
|
|
def ocr_image(image_path, language='eng+guj'): |
|
img = Image.open(image_path) |
|
text = pytesseract.image_to_string(img, lang=language) |
|
return text |
|
|
|
def ocr_pdf(pdf_path, language='eng+guj'): |
|
images = convert_from_path(pdf_path) |
|
all_text = "" |
|
for img in images: |
|
text = pytesseract.image_to_string(img, lang=language) |
|
all_text += text + "\n" |
|
return all_text |
|
|
|
def ocr_file(file_path): |
|
file_extension = os.path.splitext(file_path)[1].lower() |
|
|
|
if file_extension == ".pdf": |
|
text_re = ocr_pdf(file_path, language='guj+eng') |
|
elif file_extension in [".jpg", ".jpeg", ".png", ".bmp"]: |
|
text_re = ocr_image(file_path, language='guj+eng') |
|
else: |
|
raise ValueError("Unsupported file format. Supported formats are PDF, JPG, JPEG, PNG, BMP.") |
|
|
|
return text_re |
|
|
|
def get_text_chunks(text): |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) |
|
chunks = text_splitter.split_text(text) |
|
return chunks |
|
|
|
|
|
def get_vector_store(text_chunks): |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) |
|
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) |
|
|
|
|
|
os.makedirs("faiss_index", exist_ok=True) |
|
vector_store.save_local("faiss_index") |
|
|
|
return vector_store |
|
|
|
|
|
def process_ocr_and_pdf_files(file_paths): |
|
raw_text = "" |
|
for file_path in file_paths: |
|
raw_text += ocr_file(file_path) + "\n" |
|
text_chunks = get_text_chunks(raw_text) |
|
return get_vector_store(text_chunks) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_conversational_chain(): |
|
template = """You are an intelligent educational assistant specialized in handling queries about documents. You have been provided with OCR-processed text from the uploaded files that contains important educational information. |
|
|
|
Core Responsibilities: |
|
1. Language Processing: |
|
- Identify the language of the user's query (English or Gujarati) |
|
- Respond in the same language as the query |
|
- If the query is in Gujarati, ensure the response maintains proper Gujarati grammar and terminology |
|
- For technical terms, provide both English and Gujarati versions when relevant |
|
|
|
2. Document Understanding: |
|
- Analyze the OCR-processed text from the uploaded files |
|
- Account for potential OCR errors or misinterpretations |
|
- Focus on extracting accurate information despite possible OCR imperfections |
|
|
|
3. Response Guidelines: |
|
- Provide direct, clear answers based solely on the document content |
|
- If information is unclear due to OCR quality, mention this limitation |
|
- For numerical data (dates, percentages, marks), double-check accuracy before responding |
|
- If information is not found in the documents, clearly state: "This information is not present in the uploaded documents" |
|
|
|
4. Educational Context: |
|
- Maintain focus on educational queries related to the document content |
|
- For admission-related queries, emphasize important deadlines and requirements |
|
- For scholarship information, highlight eligibility criteria and application processes |
|
- For course-related queries, provide detailed, accurate information from the documents |
|
|
|
5. Response Format: |
|
- Structure responses clearly with relevant subpoints when necessary |
|
- For complex information, break down the answer into digestible parts |
|
- Include relevant reference points from the documents when applicable |
|
- Format numerical data and dates clearly |
|
|
|
6. Quality Control: |
|
- Verify that responses align with the document content |
|
- Don't make assumptions beyond the provided information |
|
- If multiple interpretations are possible due to OCR quality, mention all possibilities |
|
- Maintain consistency in terminology throughout the conversation |
|
|
|
Important Rules: |
|
- Never make up information not present in the documents |
|
- Don't combine information from previous conversations or external knowledge |
|
- Always indicate if certain parts of the documents are unclear due to OCR quality |
|
- Maintain professional tone while being accessible to students and parents |
|
- If the query is out of scope of the uploaded documents, politely redirect to relevant official sources |
|
|
|
Context from uploaded documents: |
|
{context} |
|
|
|
Chat History: |
|
{history} |
|
|
|
Current Question: {question} |
|
Assistant: Let me provide a clear and accurate response based on the uploaded documents... |
|
""" |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) |
|
new_vector_store = FAISS.load_local( |
|
"faiss_index", embeddings, allow_dangerous_deserialization=True |
|
) |
|
QA_CHAIN_PROMPT = PromptTemplate(input_variables=["history", "context", "question"], template=template) |
|
qa_chain = RetrievalQA.from_chain_type(llm, retriever=new_vector_store.as_retriever(), chain_type='stuff', verbose=True, chain_type_kwargs={"verbose": True,"prompt": QA_CHAIN_PROMPT,"memory": ConversationBufferMemory(memory_key="history",input_key="question"),}) |
|
return qa_chain |
|
|
|
|
|
def user_input(user_question): |
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True}) |
|
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) |
|
docs = new_db.similarity_search(user_question) |
|
chain = get_conversational_chain() |
|
response = chain({"input_documents": docs, "query": user_question}, return_only_outputs=True) |
|
result = response.get("result", "No result found") |
|
|
|
|
|
if 'conversation_history' not in st.session_state: |
|
st.session_state.conversation_history = [] |
|
|
|
|
|
st.session_state.conversation_history.append({'question': user_question, 'answer': result}) |
|
|
|
return result |
|
|
|
|
|
def main(): |
|
st.title("File Upload and OCR Processing") |
|
st.write("Upload up to 5 files (PDF, JPG, JPEG, PNG, BMP)") |
|
|
|
uploaded_files = st.file_uploader("Choose files", type=["pdf", "jpg", "jpeg", "png", "bmp"], accept_multiple_files=True) |
|
|
|
if len(uploaded_files) > 0: |
|
file_paths = [] |
|
|
|
|
|
for uploaded_file in uploaded_files[:5]: |
|
file_path = os.path.join("temp", uploaded_file.name) |
|
os.makedirs(os.path.dirname(file_path), exist_ok=True) |
|
with open(file_path, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
file_paths.append(file_path) |
|
|
|
|
|
st.write("Processing files...") |
|
vector_store = process_ocr_and_pdf_files(file_paths) |
|
st.write("Processing completed! The vector store has been updated.") |
|
|
|
|
|
user_question = st.text_input("Ask a question related to the uploaded documents:") |
|
|
|
if user_question: |
|
response = user_input(user_question) |
|
st.write("Answer:", response) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with st.expander('Conversation History'): |
|
for entry in st.session_state.conversation_history: |
|
st.info(f"Q: {entry['question']}\nA: {entry['answer']}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|