Krishna Velama
first move
286abe0
raw
history blame
6.95 kB
import os
import re
from dotenv import load_dotenv
import torch
from transformers import RobertaForSequenceClassification, RobertaTokenizerFast, pipeline as text_pipeline
import gradio as gr
from openai import OpenAI
# Load environment variables from .env file
load_dotenv()
# Get API key from environment
API_KEY = os.getenv("API_KEY")
# Initialize OpenAI client
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key=API_KEY
)
# Load classification model
def load_emotion_model(model_path):
model = RobertaForSequenceClassification.from_pretrained(model_path)
tokenizer = RobertaTokenizerFast.from_pretrained(model_path)
return model, tokenizer
# Map prediction to readable labels
def map_to_labels(label):
return "Happy/Positive Mindset" if label.lower() == "positive" else "Depressed/Negative Mindset"
# Classify mental state based on user input
def classify_emotion(user_input, model, tokenizer, device):
nlp = text_pipeline("text-classification", model=model, tokenizer=tokenizer, device=device)
result = nlp(user_input)
return map_to_labels(result[0]['label'])
# Analyze emotion using the LLM
def emotion_analysis(user_input):
# # Validate input
# if not user_input.strip(): # Check for empty or blank input
# progress_callback("Please provide valid input before submitting.", False)
# return "No input provided.", ""
# Load model
model_path = "mentalhealth-roberta-base_nemotron_model" # Replace with your model path
model, tokenizer = load_emotion_model(model_path)
device = 0 if torch.cuda.is_available() else -1
# Step 1: Classify emotion
predicted_emotion = classify_emotion(user_input, model, tokenizer, device)
# Step 2: Generate LLM response
prompt = f"""
Task: You are a social psychologist specializing in Roy Baumeister's six-stage theory of emotional progression. Your task is to analyze emotional states based on user input while adhering to specific response boundaries.
[Input Information]:
**User Input**: "{user_input}"
**Model Output**: "{predicted_emotion}"
Specifics:
1. Strictly respond only to questions or input related to mental health or emotional well-being. For unrelated input, reply with: "Not a valid question."
- Example: If the user asks about weather, sports, or other unrelated topics, respond with: "Not a valid question."
2. Use the **User Input** as the primary source for determining the emotional state, while considering the **Model Output** ("happy" or "depressed") only as a secondary reference.
3. Assign the user’s emotional state to one of Roy Baumeister’s six stages of emotional progression:
- Stage 1: Falling short of expectations
- Stage 2: Attributions to self
- Stage 3: High self-awareness
- Stage 4: Negative affect
- Stage 5: Cognitive deconstruction
- Stage 6: Disinhibition
4. Provide specific recommendations for the assigned stage:
- If the user is **depressed**, suggest stage-specific remedies to improve their emotional state.
- If the user is **happy**, suggest strategies to maintain or enhance their happiness.
5. Prioritize clarity, empathy, and practicality in your analysis and suggestions.
[Response Rules]:
- Do NOT attempt to provide an output if the input is not related to mental health.
- Always analyze the user’s input independently, even if it conflicts with the model’s predicted output.
[Desired Output Format]:
Emotional Analysis:
I'd say you're feeling: <Happy/Depressed>
Emotional Stage: <Stage and brief reasoning>
Suggested Remedies/Strategies: <Practical advice based on the stage>
"""
try:
completion = client.chat.completions.create(
model="nvidia/nemotron-4-340b-instruct",
messages=[{"role": "user", "content": prompt}],
temperature=0.2,
top_p=0.7,
max_tokens=512,
stream=True
)
# Iterate over the streaming response
response = ""
for chunk in completion:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
# response = chunk.choices[0].delta.content
response_chunk = chunk.choices[0].delta.content
response += response_chunk
else:
print(f"Unexpected chunk format: {chunk}")
except Exception as e:
response = f"An error occurred while processing the response: {e}"
response= str(response).replace("*", '')
return response
def extract_analysis_details(analysis_text):
feelings_match = re.search(r"I'd say you're feeling:\s*([^\n]+)", analysis_text)
feelings = feelings_match.group(1).strip() if feelings_match else "Not Found"
if feelings.lower() == "happy":
feelings = feelings + " with Positive Mindset"
elif feelings.lower() == "depressed":
feelings = feelings + " with Negative Mindset"
else:
feelings
# Extract emotional stage
stage_match = re.search(r"Emotional Stage:\s*([^\n.]+)", analysis_text)
emotional_stage = stage_match.group(1).strip() if stage_match else "Not Found"
# Regex to match the section header and capture from there to the end
pattern = r"(Suggested Remedies|Suggested Remedies/Strategies|Suggested Strategies):.*"
match = re.search(pattern, analysis_text, re.DOTALL)
suggestions = match.group(0).strip() if match else "No matching section found."
# print(suggestions)
if feelings == "Not Found":
feelings = "Not a valid question."
return feelings, emotional_stage, suggestions
# Gradio interface with input validation
def validate_and_run(user_input):
if not user_input.strip(): # Check if the input is empty or just spaces
return "Please provide valid input before submitting.", "Not Applicable", "Not Applicable"
else:
response = emotion_analysis(user_input)
return extract_analysis_details(response)
# Gradio interface
iface = gr.Interface(
fn=validate_and_run,
inputs=gr.Textbox(#lines=2,
label="How are you feeling today?",
placeholder="Share your thoughts here...!"),
outputs=[
# gr.Textbox(label="Analysing Your State of Mind...."),
# gr.Textbox(label="Providing Best Strategies")
# gr.Textbox(label="Original"),
gr.Textbox(label="Feelings"),
gr.Textbox(label="Emotional Stage"),
gr.Textbox(label="Providing Best Strategies")
],
# live=True,
title="Analyze your emotions and generate stage-specific psychological insights\n",
# title = "Emotion Analysis and Dynamic Response Generator"
# description="Analyze your emotions and receive dynamic psychological insights."
)
# Launch the app
if __name__ == "__main__":
iface.launch()