Natural_SQL / app.py
Kukedlc's picture
Update app.py
170cb41 verified
raw
history blame
1.71 kB
import gradio as gr
from llama_cpp import Llama
llm = Llama(model_path="model.gguf", n_ctx=8000, n_threads=2, chat_format="chatml")
def generate(message, history,temperature=0.3,max_tokens=512):
system_prompt = """You are a SQL virtual assistant, you will only create queries thinking step by step. Check that the syntax is perfect and don't miss any character. Pay attention to the names of the tables and fields. Do not make up fields that do not exist. I want you to give the query only. Do not speak and do not explain anything. Just provide the queries with no further words."""
formatted_prompt = [{"role": "system", "content": system_prompt}]
for user_prompt, bot_response in history:
formatted_prompt.append({"role": "user", "content": user_prompt})
formatted_prompt.append({"role": "assistant", "content": bot_response })
formatted_prompt.append({"role": "user", "content": message})
stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature, max_tokens=max_tokens, stream=True)
response = ""
for chunk in stream_response:
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
response += chunk['choices'][0]["delta"]["content"]
yield response
mychatbot = gr.Chatbot(
avatar_images=["user.png", "botnb.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
iface = gr.ChatInterface(fn=generate, chatbot=mychatbot, retry_btn=None, undo_btn=None)
with gr.Blocks() as demo:
gr.HTML("<center><h1>Natural SQL</h1></center>")
iface.render()
demo.queue().launch(show_api=False, server_name="0.0.0.0")