刘虹雨
update
8ed2f16
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""
import math
import torch
import torch.nn as nn
import numpy as np
from .ray_marcher import MipRayMarcher2
from . import math_utils
# global Meshes, load_obj, rasterize_meshes
# from pytorch3d.structures import Meshes
# from pytorch3d.io import load_obj
# from pytorch3d.renderer.mesh import rasterize_meshes
def generate_planes(return_inv=True): # 与project_onto_planes相对应
"""
Defines planes by the three vectors that form the "axes" of the
plane. Should work with arbitrary number of planes and planes of
arbitrary orientation.
"""
planes = torch.tensor([[[1, 0, 0],
[0, 1, 0],
[0, 0, 1]],
[[1, 0, 0],
[0, 0, 1],
[0, 1, 0]],
[[0, 0, 1],
[1, 0, 0],
[0, 1, 0]]], dtype=torch.float32)
if return_inv:
return torch.linalg.inv(planes)
else:
return planes
def project_onto_planes(inv_planes, coordinates):
"""
Does a projection of a 3D point onto a batch of 2D planes,
returning 2D plane coordinates.
Takes plane axes of shape n_planes, 3, 3
# Takes coordinates of shape N, M, 3
# returns projections of shape N*n_planes, M, 2
"""
N, M, C = coordinates.shape
n_planes = 3
coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
inv_planes = inv_planes.unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
projections = torch.bmm(coordinates, inv_planes)
return projections[..., :2]
# def project_onto_planes(planes, coordinates):
# """
# Does a projection of a 3D point onto a batch of 2D planes,
# returning 2D plane coordinates.
#
# Takes plane axes of shape n_planes, 3, 3
# # Takes coordinates of shape N, M, 3
# # returns projections of shape N*n_planes, M, 2
# """
# N, M, C = coordinates.shape
# n_planes, _, _ = planes.shape
# coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
# print('project_onto_planes', planes.view(-1), torch.abs(planes).sum())
# print(torch.linalg.inv(planes.clone().detach()))
# inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3) # TODO:此处是否有翻转?
# projections = torch.bmm(coordinates, inv_planes)
# return projections[..., :2]
def sample_from_planes(inv_planes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None, debug=False):
assert padding_mode == 'zeros'
N, n_planes, C, H, W = plane_features.shape
_, M, _ = coordinates.shape
plane_features = plane_features.view(N*n_planes, C, H, W)
coordinates = (2/box_warp) * coordinates # TODO: add specific box bounds
if debug: # debug
from torch_utils import debug_utils
debug_utils.save_obj('unproject_depth_cano.obj', v=coordinates.cpu()[0].numpy())
projected_coordinates = project_onto_planes(inv_planes, coordinates).unsqueeze(1)
output_features = torch.nn.functional.grid_sample(plane_features, projected_coordinates.float(), mode=mode, padding_mode=padding_mode, align_corners=False).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
return output_features
def sample_from_3dgrid(grid, coordinates, padding_mode='zeros', box_warp=None, pyramid=False):
"""
Expects coordinates in shape (batch_size, num_points_per_batch, 3)
Expects grid in shape (1, channels, H, W, D)
(Also works if grid has batch size)
Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
"""
batch_size, n_coords, n_dims = coordinates.shape
coordinates = (2 / box_warp) * coordinates # TODO: add specific box bounds
sampled_features = torch.nn.functional.grid_sample(grid.expand(batch_size, -1, -1, -1, -1),
coordinates.reshape(batch_size, 1, 1, -1, n_dims),
mode='bilinear', padding_mode=padding_mode, align_corners=False)
if pyramid:
for i in range(2):
grid_ = torch.nn.functional.interpolate(grid, scale_factor=0.5**((i+1)*2), mode='trilinear', align_corners=False)
sampled_features_ = torch.nn.functional.grid_sample(grid_.expand(batch_size, -1, -1, -1, -1),
coordinates.reshape(batch_size, 1, 1, -1, n_dims),
mode='bilinear', padding_mode=padding_mode, align_corners=False)
sampled_features += sampled_features_
N, C, H, W, D = sampled_features.shape
sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C)
return sampled_features
class ImportanceRenderer(torch.nn.Module):
def __init__(self, flip_z):
super().__init__()
self.ray_marcher = MipRayMarcher2()
self.plane_axes = generate_planes()
self.flip_z = flip_z
def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options):
self.plane_axes = self.plane_axes.to(ray_origins.device)
if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto':
ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp'])
is_ray_valid = ray_end > ray_start
if torch.any(is_ray_valid).item():
ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
else:
# Create stratified depth samples
depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape
# Coarse Pass
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
colors_coarse = out['rgb']
densities_coarse = out['sigma']
colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1])
densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1)
# Fine Pass
N_importance = rendering_options['depth_resolution_importance']
if N_importance > 0:
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
depths_fine = self.sample_importance(depths_coarse, weights, N_importance)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3)
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
colors_fine = out['rgb']
densities_fine = out['sigma']
colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1])
densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1)
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
depths_fine, colors_fine, densities_fine)
# Aggregate
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
else:
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
return rgb_final, depth_final, weights.sum(2)
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
if self.flip_z:
sample_coordinates[..., -1] *= -1
sampled_features = sample_from_planes(self.plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])
out = decoder(sampled_features, sample_directions)
if options.get('density_noise', 0) > 0:
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
return out
def sort_samples(self, all_depths, all_colors, all_densities):
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2):
all_depths = torch.cat([depths1, depths2], dim = -2)
all_colors = torch.cat([colors1, colors2], dim = -2)
all_densities = torch.cat([densities1, densities2], dim = -2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
"""
Return depths of approximately uniformly spaced samples along rays.
"""
N, M, _ = ray_origins.shape
if disparity_space_sampling:
depths_coarse = torch.linspace(0,
1,
depth_resolution,
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = 1/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
else:
if type(ray_start) == torch.Tensor:
depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3)
depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None]
else:
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
return depths_coarse
def sample_importance(self, z_vals, weights, N_importance):
"""
Return depths of importance sampled points along rays. See NeRF importance sampling for more.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher
# smooth weights
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance).detach().reshape(batch_size, num_rays, N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.clamp_min(inds-1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[...,1]-cdf_g[...,0]
denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
return samples
class ImportanceRenderer_bsMotion(torch.nn.Module):
def __init__(self):
super().__init__()
self.ray_marcher = MipRayMarcher2()
self.plane_axes = generate_planes()
def orth_transform(self, sample_coordinates, orth_scale):
sample_coordinates[..., 2] *= -1
sample_coordinates[..., 0] += self.orth_shift[0]
sample_coordinates[..., 1] += self.orth_shift[1]
sample_coordinates[..., 2] += self.orth_shift[2]
return sample_coordinates * orth_scale
def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options, evaluation=False):
self.plane_axes = self.plane_axes.to(ray_origins.device)
dist = torch.norm(ray_origins, dim=-1).mean().item()
ray_start, ray_end = dist - 0.45, dist + 0.6
depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
batch_size, num_rays, samples_per_ray, _ = depths_coarse.shape
# Coarse Pass
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_coarse * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
# sample_coordinates = self.orth_transform(sample_coordinates, self.orth_scale)
sample_coordinates_cano = sample_coordinates
out = self.run_model(planes, decoder, sample_coordinates_cano, sample_directions, rendering_options)
colors_coarse = out['rgb']
densities_coarse = out['sigma']
colors_coarse = colors_coarse.reshape(batch_size, num_rays, samples_per_ray, colors_coarse.shape[-1])
densities_coarse = densities_coarse.reshape(batch_size, num_rays, samples_per_ray, 1)
# Fine Pass
N_importance = rendering_options['depth_resolution_importance']
if N_importance > 0:
_, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
depths_fine = self.sample_importance(depths_coarse, weights, N_importance, det=evaluation)
sample_coordinates = (ray_origins.unsqueeze(-2) + depths_fine * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)
sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, N_importance, -1).reshape(batch_size, -1, 3)
out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)
colors_fine = out['rgb']
densities_fine = out['sigma']
colors_fine = colors_fine.reshape(batch_size, num_rays, N_importance, colors_fine.shape[-1])
densities_fine = densities_fine.reshape(batch_size, num_rays, N_importance, 1)
all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
depths_fine, colors_fine, densities_fine)
# Aggregate
rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
else:
rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)
return rgb_final, depth_final, weights.sum(2)
def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
# sample_coordinates[..., -1] *= -1
# if planes.shape[1] == 3:
sampled_features = sample_from_planes(self.plane_axes.clone(), planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])
# elif planes.shape[2] == planes.shape[-1]:
# sampled_features = sample_from_3dgrid(planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'], pyramid=True).unsqueeze(1)
out = decoder(sampled_features, sample_directions)
if options.get('density_noise', 0) > 0:
out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
return out
def sort_samples(self, all_depths, all_colors, all_densities):
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2):
all_depths = torch.cat([depths1, depths2], dim = -2)
all_colors = torch.cat([colors1, colors2], dim = -2)
all_densities = torch.cat([densities1, densities2], dim = -2)
_, indices = torch.sort(all_depths, dim=-2)
all_depths = torch.gather(all_depths, -2, indices)
all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
return all_depths, all_colors, all_densities
def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
"""
Return depths of approximately uniformly spaced samples along rays.
"""
N, M, _ = ray_origins.shape
if disparity_space_sampling:
depths_coarse = torch.linspace(0,
1,
depth_resolution,
device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = 1/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
else:
if type(ray_start) == torch.Tensor:
# ray_start [N, M, 1]
depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3) # [D, N, M, 1] -> [N, M, D, 1]
depth_delta = (ray_end - ray_start) / (depth_resolution - 1) # [N, M, 1]
depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None] # [N, M, D, 1]
else:
depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
depths_coarse += torch.rand_like(depths_coarse) * depth_delta
return depths_coarse
def sample_importance(self, z_vals, weights, N_importance, det):
"""
Return depths of importance sampled points along rays. See NeRF importance sampling for more.
"""
with torch.no_grad():
batch_size, num_rays, samples_per_ray, _ = z_vals.shape
z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher
# smooth weights
weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1).float(), 2, 1, padding=1)
weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
weights = weights + 0.01
z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
N_importance, det).detach().reshape(batch_size, num_rays, N_importance, 1)
return importance_z_vals
def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
"""
Sample @N_importance samples from @bins with distribution defined by @weights.
Inputs:
bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
weights: (N_rays, N_samples_)
N_importance: the number of samples to draw from the distribution
det: deterministic or not
eps: a small number to prevent division by zero
Outputs:
samples: the sampled samples
"""
N_rays, N_samples_ = weights.shape
weights = weights + eps # prevent division by zero (don't do inplace op!)
pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1) # (N_rays, N_samples_+1)
# padded to 0~1 inclusive
if det:
u = torch.linspace(0, 1, N_importance, device=bins.device)
u = u.expand(N_rays, N_importance)
else:
u = torch.rand(N_rays, N_importance, device=bins.device)
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.clamp_min(inds-1, 0)
above = torch.clamp_max(inds, N_samples_)
inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)
denom = cdf_g[...,1]-cdf_g[...,0]
denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
# anyway, therefore any value for it is fine (set to 1 here)
samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
return samples
from torch_utils import misc
@misc.profiled_function
def dict2obj(d):
# if isinstance(d, list):
# d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
from torch_utils import persistence
@persistence.persistent_class
class Pytorch3dRasterizer(nn.Module):
## TODO: add support for rendering non-squared images, since pytorc3d supports this now
""" Borrowed from https://github.com/facebookresearch/pytorch3d
Notice:
x,y,z are in image space, normalized
can only render squared image now
"""
def __init__(self, image_size=224):
"""
use fixed raster_settings for rendering faces
"""
super().__init__()
raster_settings = {
'image_size': image_size,
'blur_radius': 0.0,
'faces_per_pixel': 1,
'bin_size': None,
'max_faces_per_bin': None,
'perspective_correct': False,
'cull_backfaces': True
}
# raster_settings = dict2obj(raster_settings)
self.raster_settings = raster_settings
def forward(self, vertices, faces, attributes=None, h=None, w=None):
fixed_vertices = vertices.clone()
fixed_vertices[...,:2] = -fixed_vertices[...,:2]
raster_settings = self.raster_settings
if h is None and w is None:
image_size = raster_settings['image_size']
else:
image_size = [h, w]
if h>w:
fixed_vertices[..., 1] = fixed_vertices[..., 1]*h/w
else:
fixed_vertices[..., 0] = fixed_vertices[..., 0]*w/h
meshes_screen = Meshes(verts=fixed_vertices.float(), faces=faces.long())
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=image_size,
blur_radius=raster_settings['blur_radius'],
faces_per_pixel=raster_settings['faces_per_pixel'],
bin_size=0,#raster_settings['bin_size'],
max_faces_per_bin=raster_settings['max_faces_per_bin'],
perspective_correct=raster_settings['perspective_correct'],
cull_backfaces=raster_settings['cull_backfaces']
)
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone(); attributes = attributes.view(attributes.shape[0]*attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:,:,:,0].permute(0,3,1,2)
pixel_vals = torch.cat([pixel_vals, vismask[:,:,:,0][:,None,:,:]], dim=1)
# print(image_size)
# import ipdb; ipdb.set_trace()
return pixel_vals
def render_after_rasterize(attributes, pix_to_face, bary_coords):
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone()
attributes = attributes.view(attributes.shape[0] * attributes.shape[1], 3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat([pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
return pixel_vals
# borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
assert (vertices.ndimension() == 3)
assert (faces.ndimension() == 3)
assert (vertices.shape[0] == faces.shape[0])
assert (vertices.shape[2] == 3)
assert (faces.shape[2] == 3)
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None]
vertices = vertices.reshape((bs * nv, 3))
# pytorch only supports long and byte tensors for indexing
return vertices[faces.long()]
# ---------------------------- process/generate vertices, normals, faces
def generate_triangles(h, w, margin_x=2, margin_y=5, mask = None):
# quad layout:
# 0 1 ... w-1
# w w+1
#.
# w*h
triangles = []
for x in range(margin_x, w-1-margin_x):
for y in range(margin_y, h-1-margin_y):
triangle0 = [y*w + x, y*w + x + 1, (y+1)*w + x]
triangle1 = [y*w + x + 1, (y+1)*w + x + 1, (y+1)*w + x]
triangles.append(triangle0)
triangles.append(triangle1)
triangles = np.array(triangles)
triangles = triangles[:,[0,2,1]]
return triangles
def transform_points(points, tform, points_scale=None, out_scale=None):
points_2d = points[:,:,:2]
#'input points must use original range'
if points_scale:
assert points_scale[0]==points_scale[1]
points_2d = (points_2d*0.5 + 0.5)*points_scale[0]
# import ipdb; ipdb.set_trace()
batch_size, n_points, _ = points.shape
trans_points_2d = torch.bmm(
torch.cat([points_2d, torch.ones([batch_size, n_points, 1], device=points.device, dtype=points.dtype)], dim=-1),
tform
)
if out_scale: # h,w of output image size
trans_points_2d[:,:,0] = trans_points_2d[:,:,0]/out_scale[1]*2 - 1
trans_points_2d[:,:,1] = trans_points_2d[:,:,1]/out_scale[0]*2 - 1
trans_points = torch.cat([trans_points_2d[:,:,:2], points[:,:,2:]], dim=-1)
return trans_points
def batch_orth_proj(X, camera):
''' orthgraphic projection
X: 3d vertices, [bz, n_point, 3]
camera: scale and translation, [bz, 3], [scale, tx, ty]
'''
camera = camera.clone().view(-1, 1, 3)
X_trans = X[:, :, :2] + camera[:, :, 1:]
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2)
shape = X_trans.shape
Xn = (camera[:, :, 0:1] * X_trans)
return Xn
def angle2matrix(angles):
''' get rotation matrix from three rotation angles(degree). right-handed.
Args:
angles: [batch_size, 3] tensor containing X, Y, and Z angles.
x: pitch. positive for looking down.
y: yaw. positive for looking left.
z: roll. positive for tilting head right.
Returns:
R: [batch_size, 3, 3]. rotation matrices.
'''
angles = angles*(np.pi)/180.
s = torch.sin(angles)
c = torch.cos(angles)
cx, cy, cz = (c[:, 0], c[:, 1], c[:, 2])
sx, sy, sz = (s[:, 0], s[:, 1], s[:, 2])
zeros = torch.zeros_like(s[:, 0]).to(angles.device)
ones = torch.ones_like(s[:, 0]).to(angles.device)
# Rz.dot(Ry.dot(Rx))
R_flattened = torch.stack(
[
cz * cy, cz * sy * sx - sz * cx, cz * sy * cx + sz * sx,
sz * cy, sz * sy * sx + cz * cx, sz * sy * cx - cz * sx,
-sy, cy * sx, cy * cx,
],
dim=0) #[batch_size, 9]
R = torch.reshape(R_flattened, (-1, 3, 3)) #[batch_size, 3, 3]
return R
import cv2
# end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype = np.int32) - 1
def plot_kpts(image, kpts, color = 'r', end_list=[19]):
''' Draw 68 key points
Args:
image: the input image
kpt: (68, 3).
'''
if color == 'r':
c = (255, 0, 0)
elif color == 'g':
c = (0, 255, 0)
elif color == 'b':
c = (255, 0, 0)
image = image.copy()
kpts = kpts.copy()
radius = max(int(min(image.shape[0], image.shape[1])/200), 1)
for i in range(kpts.shape[0]):
st = kpts[i, :2]
if kpts.shape[1]==4:
if kpts[i, 3] > 0.5:
c = (0, 255, 0)
else:
c = (0, 0, 255)
if i in end_list:
continue
ed = kpts[i + 1, :2]
image = cv2.line(image, (int(st[0]), int(st[1])), (int(ed[0]), int(ed[1])), (255, 255, 255), radius)
image = cv2.circle(image,(int(st[0]), int(st[1])), radius, c, radius*2)
return image
import cv2
def fill_mouth(images, blur_mouth_edge=True):
# Input: images: [batch, 1, h, w]
device = images.device
mouth_masks = []
out_mouth_masks = []
for image in images:
image = image[0].cpu().numpy()
image = image * 255.
copyImg = image.copy().astype('float32')
h, w = image.shape[:2]
mask = np.zeros([h + 2, w + 2], np.uint8)
cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE)
# cv2.imwrite("mouth_mask_ori.png", 255 - copyImg)
mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32) / 255.
mouth_masks.append(mouth_mask.unsqueeze(0))
if blur_mouth_edge:
copyImg = cv2.erode(copyImg, np.ones((3, 3), np.uint8), iterations=3)
copyImg = cv2.blur(copyImg, (5, 5))
# cv2.imwrite("mouth_mask.png", mouth_mask)
out_mouth_masks.append(torch.tensor(255 - copyImg).to(device).to(torch.float32).unsqueeze(0) / 255.)
mouth_masks = torch.stack(mouth_masks, 0)
res = (images + mouth_masks).clip(0, 1)
return res, torch.stack(out_mouth_masks, dim=0)
# def fill_mouth(images):
# #Input: images: [batch, 1, h, w]
# device = images.device
# mouth_masks = []
# out_mouth_masks = []
# out_upper_mouth_masks, out_lower_mouth_masks = [], []
# for image in images:
# image = image[0].cpu().numpy()
# image = image * 255.
# copyImg = image.copy()
# h, w = image.shape[:2]
# mask = np.zeros([h+2, w+2], np.uint8)
# cv2.floodFill(copyImg, mask, (0, 0), (255, 255, 255), (0, 0, 0), (254, 254, 254), cv2.FLOODFILL_FIXED_RANGE)
# # cv2.imwrite("mouth_mask_ori.png", 255 - copyImg)
# mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32) / 255.
# mouth_masks.append(mouth_mask.unsqueeze(0))
#
#
# copyImg = cv2.erode(copyImg, np.ones((3, 3), np.uint8), iterations=3)
# copyImg = cv2.blur(copyImg, (5, 5))
# # cv2.imwrite("mouth_mask.png", mouth_mask)
# out_mouth_mask = torch.tensor(255 - copyImg).to(device).to(torch.float32).unsqueeze(0) / 255.
# middle_row = torch.argmax(out_mouth_mask.sum(dim=1))
# out_mouth_masks.append()
#
# mouth_masks = torch.stack(mouth_masks, 0)
# res = (images + mouth_masks).clip(0, 1)
#
# return res, torch.stack(out_mouth_masks, dim=0)