Spaces:
Runtime error
Runtime error
import copy | |
import logging | |
import os | |
import os.path as osp | |
import pickle | |
import platform | |
import time | |
import warnings | |
from collections import OrderedDict | |
from functools import partial | |
from typing import Callable, Dict, List, Optional, Sequence, Union | |
import torch | |
import torch.nn as nn | |
from lightning.pytorch.loggers import Logger | |
from torch.nn.parallel.distributed import DistributedDataParallel | |
from torch.optim import Optimizer | |
from torch.utils.data import DataLoader | |
import mmengine | |
from mmengine.config import Config, ConfigDict | |
from mmengine.dataset import worker_init_fn | |
from mmengine.device import get_device | |
from mmengine.dist import (broadcast, get_dist_info, get_rank, init_dist, | |
is_distributed, master_only) | |
from mmengine.evaluator import Evaluator | |
from mmengine.fileio import FileClient, join_path | |
from mmengine.hooks import Hook | |
from mmengine.logging import MessageHub, MMLogger, print_log | |
from mmengine.model import (MMDistributedDataParallel, convert_sync_batchnorm, | |
is_model_wrapper, revert_sync_batchnorm) | |
from mmengine.optim import (OptimWrapper, OptimWrapperDict, _ParamScheduler, | |
build_optim_wrapper) | |
from mmengine.registry import (DATA_SAMPLERS, DATASETS, EVALUATOR, FUNCTIONS, | |
HOOKS, LOG_PROCESSORS, LOOPS, MODEL_WRAPPERS, | |
OPTIM_WRAPPERS, PARAM_SCHEDULERS, | |
RUNNERS, VISUALIZERS, DefaultScope) | |
from mmengine.utils import digit_version, get_git_hash, is_seq_of | |
from mmengine.utils.dl_utils import (TORCH_VERSION, collect_env, | |
set_multi_processing) | |
from mmengine.visualization import Visualizer | |
from mmengine.runner.base_loop import BaseLoop | |
from mmengine.runner.checkpoint import (_load_checkpoint, _load_checkpoint_to_model, | |
find_latest_checkpoint, get_state_dict, | |
save_checkpoint, weights_to_cpu) | |
from mmengine.runner.log_processor import LogProcessor | |
from mmengine.runner.loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop | |
from mmengine.runner.priority import Priority, get_priority | |
from mmengine.runner.utils import set_random_seed | |
ConfigType = Union[Dict, Config, ConfigDict] | |
ParamSchedulerType = Union[List[_ParamScheduler], Dict[str, List[_ParamScheduler]]] | |
OptimWrapperType = Union[OptimWrapper, OptimWrapperDict] | |
from mmpl.registry import MODELS, LOGGERS | |
import lightning.pytorch as pl | |
from mmpl.models import build_pler | |
class PLRunner: | |
def __init__( | |
self, | |
trainer_cfg: Dict, | |
model_cfg: Union[pl.LightningModule, Dict], | |
datamodule_cfg: Optional[Dict] = None, | |
cfg: Optional[ConfigType] = None | |
): | |
self.trainer_cfg = copy.deepcopy(trainer_cfg) | |
self.model_cfg = copy.deepcopy(model_cfg) | |
self.datamodule_cfg = copy.deepcopy(datamodule_cfg) | |
mmengine.mkdir_or_exist(trainer_cfg['default_root_dir']) | |
timestamp = torch.tensor(time.time(), dtype=torch.float64) | |
# broadcast timestamp from 0 process to other processes | |
broadcast(timestamp) | |
self.timestamp = time.strftime('%Y%m%d_%H%M%S', | |
time.localtime(timestamp.item())) | |
if cfg is not None: | |
if isinstance(cfg, Config): | |
self.cfg = copy.deepcopy(cfg) | |
elif isinstance(cfg, dict): | |
self.cfg = Config(cfg) | |
else: | |
self.cfg = Config(dict()) | |
compiled_model = trainer_cfg.pop('compiled_model', False) | |
# build logger | |
loggers = self.build_logger( | |
trainer_cfg.get('logger', False), | |
trainer_cfg.get('default_root_dir', f'{self.timestamp}') | |
) | |
trainer_cfg['logger'] = loggers | |
# build visualizer used for writing log or visualizing all kinds of data | |
self.visualizer = self.build_visualizer( | |
self.cfg.get('visualizer', None), | |
trainer_cfg.get('default_root_dir', f'{self.timestamp}') | |
) | |
if self.cfg: | |
self.visualizer.add_config(self.cfg) | |
# build callbacks | |
callbacks = self.build_hooks( | |
trainer_cfg.get('callbacks', None), | |
) | |
trainer_cfg['callbacks'] = callbacks | |
# build strategy | |
strategy = self.build_strategy( | |
trainer_cfg.get('strategy', 'auto'), | |
) | |
trainer_cfg['strategy'] = strategy | |
self.trainer = pl.Trainer(**trainer_cfg) | |
model_cfg.update({'config_cfg': copy.deepcopy(cfg).to_dict()}) | |
model = self.build_model(model_cfg) | |
if cfg.get('load_from', None) is not None: | |
self.load_checkpoint(model, cfg['load_from']) | |
if compiled_model: | |
# default, reduce-overhead, and max-autotune. | |
self.model = torch.compile(model) | |
else: | |
self.model = model | |
# dump `cfg` to `work_dir` | |
self.dump_config() | |
# # Collect and log environment information. | |
# self._log_env(env_cfg) | |
# log hooks information | |
# self.logger.info(f'Hooks will be executed in the following ' | |
# f'order:\n{self.get_hooks_info()}') | |
def build_visualizer( | |
self, | |
visualizer: Optional[Union[Visualizer, | |
Dict]] = None, | |
default_root_dir = 'tmp' | |
) -> Visualizer: | |
"""Build a global asscessable Visualizer. | |
Args: | |
visualizer (Visualizer or dict, optional): A Visualizer object | |
or a dict to build Visualizer object. If ``visualizer`` is a | |
Visualizer object, just returns itself. If not specified, | |
default config will be used to build Visualizer object. | |
Defaults to None. | |
Returns: | |
Visualizer: A Visualizer object build from ``visualizer``. | |
""" | |
if visualizer is None: | |
visualizer = dict( | |
name=os.path.basename(default_root_dir), | |
vis_backends=[dict(type='LocalVisBackend')], | |
save_dir=default_root_dir+'/visualizer' | |
) | |
return Visualizer.get_instance(**visualizer) | |
if isinstance(visualizer, Visualizer): | |
return visualizer | |
if isinstance(visualizer, dict): | |
# ensure visualizer containing name key | |
visualizer.setdefault('name', os.path.basename(default_root_dir)) | |
visualizer.setdefault('save_dir', default_root_dir+'/visualizer') | |
return VISUALIZERS.build(visualizer) | |
else: | |
raise TypeError( | |
'visualizer should be Visualizer object, a dict or None, ' | |
f'but got {visualizer}') | |
def build_hooks(self, hooks: Union[Dict, List[Dict]] = None) -> List[Hook]: | |
"""Build hooks from config. | |
Args: | |
hooks_cfg (dict): Config dict of hooks. | |
Returns: | |
list[Hook]: A list of hooks. | |
""" | |
if hooks is not None: | |
if isinstance(hooks, dict): | |
hooks = [hooks] | |
tmp_hooks = [] | |
for hook in hooks: | |
hook = HOOKS.build(hook) | |
tmp_hooks.append(hook) | |
hooks = tmp_hooks | |
return hooks | |
def from_cfg(cls, cfg: ConfigType) -> 'Runner': | |
cfg = copy.deepcopy(cfg) | |
runner = cls( | |
trainer_cfg=cfg.get('trainer_cfg'), | |
model_cfg=cfg['model_cfg'], | |
datamodule_cfg=cfg.get('datamodule_cfg'), | |
cfg=cfg | |
) | |
return runner | |
def build_logger(self, loggers: Union[Dict, List[Dict]] = None, default_root_dir='logger'): | |
if loggers is not None and loggers: | |
if isinstance(loggers, Dict): | |
loggers = [loggers] | |
tmp_loggers = [] | |
for logger in loggers: | |
if logger.get('save_dir', None) is None: | |
logger['save_dir'] = default_root_dir | |
mmengine.mkdir_or_exist(logger['save_dir']) | |
tmp_loggers.append(LOGGERS.build(logger)) | |
loggers = tmp_loggers | |
return loggers | |
def build_strategy(self, strategy='auto'): | |
if isinstance(strategy, str): | |
return strategy | |
elif isinstance(strategy, dict): | |
if strategy.get('type', '') == 'FSDPStrategy': | |
from torch.distributed.fsdp import CPUOffload | |
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy | |
import functools | |
strategy.update( | |
dict( | |
# cpu_offload=CPUOffload(offload_params=True), | |
auto_wrap_policy=functools.partial( | |
size_based_auto_wrap_policy, min_num_params=int(5e7) | |
) | |
) | |
) | |
strategy = MODEL_WRAPPERS.build(strategy) | |
return strategy | |
return strategy | |
def build_model(self, model: Union[pl.LightningModule, Dict]) -> pl.LightningModule: | |
if isinstance(model, pl.LightningModule): | |
return model | |
elif isinstance(model, dict): | |
model = build_pler(model) | |
return model # type: ignore | |
else: | |
raise TypeError('model should be a nn.Module object or dict, ' | |
f'but got {model}') | |
def _init_model_weights(self) -> None: | |
"""Initialize the model weights if the model has | |
:meth:`init_weights`""" | |
if hasattr(self.model, 'module'): | |
model = self.model.module | |
else: | |
model = self.model | |
if hasattr(model, 'init_weights'): | |
model.init_weights() | |
# sync params and buffers | |
for name, params in model.state_dict().items(): | |
broadcast(params) | |
def get_hooks_info(self) -> str: | |
# Get hooks info in each stage | |
stage_hook_map: Dict[str, list] = {stage: [] for stage in Hook.stages} | |
for hook in self.hooks: | |
try: | |
priority = Priority(hook.priority).name # type: ignore | |
except ValueError: | |
priority = hook.priority # type: ignore | |
classname = hook.__class__.__name__ | |
hook_info = f'({priority:<12}) {classname:<35}' | |
for trigger_stage in hook.get_triggered_stages(): | |
stage_hook_map[trigger_stage].append(hook_info) | |
stage_hook_infos = [] | |
for stage in Hook.stages: | |
hook_infos = stage_hook_map[stage] | |
if len(hook_infos) > 0: | |
info = f'{stage}:\n' | |
info += '\n'.join(hook_infos) | |
info += '\n -------------------- ' | |
stage_hook_infos.append(info) | |
return '\n'.join(stage_hook_infos) | |
def load_or_resume(self) -> None: | |
"""load or resume checkpoint.""" | |
if self._has_loaded: | |
return None | |
# decide to load from checkpoint or resume from checkpoint | |
resume_from = None | |
if self._resume and self._load_from is None: | |
# auto resume from the latest checkpoint | |
resume_from = find_latest_checkpoint(self.work_dir) | |
self.logger.info( | |
f'Auto resumed from the latest checkpoint {resume_from}.') | |
elif self._resume and self._load_from is not None: | |
# resume from the specified checkpoint | |
resume_from = self._load_from | |
if resume_from is not None: | |
self.resume(resume_from) | |
self._has_loaded = True | |
elif self._load_from is not None: | |
self.load_checkpoint(self._load_from) | |
self._has_loaded = True | |
def build_datamodule(datamodule_cfg: Union[pl.LightningDataModule, Dict]): | |
if isinstance(datamodule_cfg, pl.LightningDataModule): | |
return datamodule_cfg | |
datamodule_cfg = copy.deepcopy(datamodule_cfg) | |
# build datamodule | |
datamodule = DATASETS.build(datamodule_cfg) | |
return datamodule | |
def run(self, status, *args, **kwargs): | |
assert status in ['fit', 'test', 'predict', 'validate'] | |
trainer_func = self.trainer.__getattribute__(status) | |
self.datamodule = self.build_datamodule(self.datamodule_cfg) | |
return trainer_func(model=self.model, datamodule=self.datamodule, *args, **kwargs) | |
# | |
# if is_model_wrapper(self.model): | |
# ori_model = self.model.module | |
# else: | |
# ori_model = self.model | |
# assert hasattr(ori_model, 'train_step'), ( | |
# 'If you want to train your model, please make sure your model ' | |
# 'has implemented `train_step`.') | |
# | |
# if self._val_loop is not None: | |
# assert hasattr(ori_model, 'val_step'), ( | |
# 'If you want to validate your model, please make sure your ' | |
# 'model has implemented `val_step`.') | |
# | |
# if self._train_loop is None: | |
# raise RuntimeError( | |
# '`self._train_loop` should not be None when calling train ' | |
# 'method. Please provide `train_dataloader`, `train_cfg`, ' | |
# '`optimizer` and `param_scheduler` arguments when ' | |
# 'initializing runner.') | |
# | |
# self._train_loop = self.build_train_loop( | |
# self._train_loop) # type: ignore | |
# | |
# # `build_optimizer` should be called before `build_param_scheduler` | |
# # because the latter depends on the former | |
# self.optim_wrapper = self.build_optim_wrapper(self.optim_wrapper) | |
# # Automatically scaling lr by linear scaling rule | |
# self.scale_lr(self.optim_wrapper, self.auto_scale_lr) | |
# | |
# if self.param_schedulers is not None: | |
# self.param_schedulers = self.build_param_scheduler( # type: ignore | |
# self.param_schedulers) # type: ignore | |
# | |
# if self._val_loop is not None: | |
# self._val_loop = self.build_val_loop( | |
# self._val_loop) # type: ignore | |
# # TODO: add a contextmanager to avoid calling `before_run` many times | |
# self.call_hook('before_run') | |
# | |
# # initialize the model weights | |
# self._init_model_weights() | |
# # make sure checkpoint-related hooks are triggered after `before_run` | |
# self.load_or_resume() | |
# | |
# # Initiate inner count of `optim_wrapper`. | |
# self.optim_wrapper.initialize_count_status( | |
# self.model, | |
# self._train_loop.iter, # type: ignore | |
# self._train_loop.max_iters) # type: ignore | |
# | |
# # Maybe compile the model according to options in self.cfg.compile | |
# # This must be called **AFTER** model has been wrapped. | |
# self._maybe_compile('train_step') | |
# | |
# model = self.train_loop.run() # type: ignore | |
# self.call_hook('after_run') | |
# return model | |
def register_hook( | |
self, | |
hook: Union[Hook, Dict], | |
priority: Optional[Union[str, int, Priority]] = None) -> None: | |
"""Register a hook into the hook list. | |
The hook will be inserted into a priority queue, with the specified | |
priority (See :class:`Priority` for details of priorities). | |
For hooks with the same priority, they will be triggered in the same | |
order as they are registered. | |
Priority of hook will be decided with the following priority: | |
- ``priority`` argument. If ``priority`` is given, it will be priority | |
of hook. | |
- If ``hook`` argument is a dict and ``priority`` in it, the priority | |
will be the value of ``hook['priority']``. | |
- If ``hook`` argument is a dict but ``priority`` not in it or ``hook`` | |
is an instance of ``hook``, the priority will be ``hook.priority``. | |
Args: | |
hook (:obj:`Hook` or dict): The hook to be registered. | |
priority (int or str or :obj:`Priority`, optional): Hook priority. | |
Lower value means higher priority. | |
""" | |
if not isinstance(hook, (Hook, dict)): | |
raise TypeError( | |
f'hook should be an instance of Hook or dict, but got {hook}') | |
_priority = None | |
if isinstance(hook, dict): | |
if 'priority' in hook: | |
_priority = hook.pop('priority') | |
hook_obj = HOOKS.build(hook) | |
else: | |
hook_obj = hook | |
if priority is not None: | |
hook_obj.priority = priority | |
elif _priority is not None: | |
hook_obj.priority = _priority | |
inserted = False | |
for i in range(len(self._hooks) - 1, -1, -1): | |
if get_priority(hook_obj.priority) >= get_priority( | |
self._hooks[i].priority): | |
self._hooks.insert(i + 1, hook_obj) | |
inserted = True | |
break | |
if not inserted: | |
self._hooks.insert(0, hook_obj) | |
def register_default_hooks( | |
self, | |
hooks: Optional[Dict[str, Union[Hook, Dict]]] = None) -> None: | |
"""Register default hooks into hook list. | |
``hooks`` will be registered into runner to execute some default | |
actions like updating model parameters or saving checkpoints. | |
Default hooks and their priorities: | |
+----------------------+-------------------------+ | |
| Hooks | Priority | | |
+======================+=========================+ | |
| RuntimeInfoHook | VERY_HIGH (10) | | |
+----------------------+-------------------------+ | |
| IterTimerHook | NORMAL (50) | | |
+----------------------+-------------------------+ | |
| DistSamplerSeedHook | NORMAL (50) | | |
+----------------------+-------------------------+ | |
| LoggerHook | BELOW_NORMAL (60) | | |
+----------------------+-------------------------+ | |
| ParamSchedulerHook | LOW (70) | | |
+----------------------+-------------------------+ | |
| CheckpointHook | VERY_LOW (90) | | |
+----------------------+-------------------------+ | |
If ``hooks`` is None, above hooks will be registered by | |
default:: | |
default_hooks = dict( | |
runtime_info=dict(type='RuntimeInfoHook'), | |
timer=dict(type='IterTimerHook'), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
logger=dict(type='LoggerHook'), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=1), | |
) | |
If not None, ``hooks`` will be merged into ``default_hooks``. | |
If there are None value in default_hooks, the corresponding item will | |
be popped from ``default_hooks``:: | |
hooks = dict(timer=None) | |
The final registered default hooks will be :obj:`RuntimeInfoHook`, | |
:obj:`DistSamplerSeedHook`, :obj:`LoggerHook`, | |
:obj:`ParamSchedulerHook` and :obj:`CheckpointHook`. | |
Args: | |
hooks (dict[str, Hook or dict], optional): Default hooks or configs | |
to be registered. | |
""" | |
default_hooks: dict = dict( | |
runtime_info=dict(type='RuntimeInfoHook'), | |
timer=dict(type='IterTimerHook'), | |
sampler_seed=dict(type='DistSamplerSeedHook'), | |
logger=dict(type='LoggerHook'), | |
param_scheduler=dict(type='ParamSchedulerHook'), | |
checkpoint=dict(type='CheckpointHook', interval=1), | |
) | |
if hooks is not None: | |
for name, hook in hooks.items(): | |
if name in default_hooks and hook is None: | |
# remove hook from _default_hooks | |
default_hooks.pop(name) | |
else: | |
assert hook is not None | |
default_hooks[name] = hook | |
for hook in default_hooks.values(): | |
self.register_hook(hook) | |
def register_custom_hooks(self, hooks: List[Union[Hook, Dict]]) -> None: | |
"""Register custom hooks into hook list. | |
Args: | |
hooks (list[Hook | dict]): List of hooks or configs to be | |
registered. | |
""" | |
for hook in hooks: | |
self.register_hook(hook) | |
def register_hooks( | |
self, | |
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None, | |
custom_hooks: Optional[List[Union[Hook, Dict]]] = None) -> None: | |
"""Register default hooks and custom hooks into hook list. | |
Args: | |
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks | |
to execute default actions like updating model parameters and | |
saving checkpoints. Defaults to None. | |
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute | |
custom actions like visualizing images processed by pipeline. | |
Defaults to None. | |
""" | |
self.register_default_hooks(default_hooks) | |
if custom_hooks is not None: | |
self.register_custom_hooks(custom_hooks) | |
def resume(self, | |
filename: str, | |
resume_optimizer: bool = True, | |
resume_param_scheduler: bool = True, | |
map_location: Union[str, Callable] = 'default') -> None: | |
"""Resume model from checkpoint. | |
Args: | |
filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
``open-mmlab://xxx``. | |
resume_optimizer (bool): Whether to resume optimizer state. | |
Defaults to True. | |
resume_param_scheduler (bool): Whether to resume param scheduler | |
state. Defaults to True. | |
map_location (str or callable):A string or a callable function to | |
specifying how to remap storage locations. | |
Defaults to 'default'. | |
""" | |
if map_location == 'default': | |
device = get_device() | |
checkpoint = self.load_checkpoint(filename, map_location=device) | |
else: | |
checkpoint = self.load_checkpoint( | |
filename, map_location=map_location) | |
self.train_loop._epoch = checkpoint['meta']['epoch'] | |
self.train_loop._iter = checkpoint['meta']['iter'] | |
# check whether the number of GPU used for current experiment | |
# is consistent with resuming from checkpoint | |
if 'config' in checkpoint['meta']: | |
config = mmengine.Config.fromstring( | |
checkpoint['meta']['config'], file_format='.py') | |
previous_gpu_ids = config.get('gpu_ids', None) | |
if (previous_gpu_ids is not None and len(previous_gpu_ids) > 0 | |
and len(previous_gpu_ids) != self._world_size): | |
# TODO, should we modify the iteration? | |
self.logger.info( | |
'Number of GPU used for current experiment is not ' | |
'consistent with resuming from checkpoint') | |
if (self.auto_scale_lr is None | |
or not self.auto_scale_lr.get('enable', False)): | |
raise RuntimeError( | |
'Cannot automatically rescale lr in resuming. Please ' | |
'make sure the number of GPU is consistent with the ' | |
'previous training state resuming from the checkpoint ' | |
'or set `enable` in `auto_scale_lr to False.') | |
# resume random seed | |
resumed_seed = checkpoint['meta'].get('seed', None) | |
current_seed = self._randomness_cfg.get('seed') | |
if resumed_seed is not None and resumed_seed != current_seed: | |
if current_seed is not None: | |
print_log( | |
f'The value of random seed in the ' | |
f'checkpoint "{resumed_seed}" is ' | |
f'different from the value in ' | |
f'`randomness` config "{current_seed}"', | |
logger='current', | |
level=logging.WARNING) | |
self._randomness_cfg.update(seed=resumed_seed) | |
self.set_randomness(**self._randomness_cfg) | |
resumed_dataset_meta = checkpoint['meta'].get('dataset_meta', None) | |
dataset_meta = getattr(self.train_dataloader.dataset, 'metainfo', None) | |
# `resumed_dataset_meta` and `dataset_meta` could be object like | |
# np.ndarray, which cannot be directly judged as equal or not, | |
# therefore we just compared their dumped results. | |
if pickle.dumps(resumed_dataset_meta) != pickle.dumps(dataset_meta): | |
print_log( | |
'The dataset metainfo from the resumed checkpoint is ' | |
'different from the current training dataset, please ' | |
'check the correctness of the checkpoint or the training ' | |
'dataset.', | |
logger='current', | |
level=logging.WARNING) | |
self.message_hub.load_state_dict(checkpoint['message_hub']) | |
# resume optimizer | |
if 'optimizer' in checkpoint and resume_optimizer: | |
self.optim_wrapper = self.build_optim_wrapper(self.optim_wrapper) | |
self.optim_wrapper.load_state_dict( # type: ignore | |
checkpoint['optimizer']) | |
# resume param scheduler | |
if resume_param_scheduler and self.param_schedulers is None: | |
print_log( | |
'`resume_param_scheduler` is True but `self.param_schedulers` ' | |
'is None, so skip resuming parameter schedulers', | |
logger='current', | |
level=logging.WARNING) | |
resume_param_scheduler = False | |
if 'param_schedulers' in checkpoint and resume_param_scheduler: | |
self.param_schedulers = self.build_param_scheduler( # type: ignore | |
self.param_schedulers) # type: ignore | |
if isinstance(self.param_schedulers, dict): | |
for name, schedulers in self.param_schedulers.items(): | |
for scheduler, ckpt_scheduler in zip( | |
schedulers, checkpoint['param_schedulers'][name]): | |
scheduler.load_state_dict(ckpt_scheduler) | |
else: | |
for scheduler, ckpt_scheduler in zip( | |
self.param_schedulers, # type: ignore | |
checkpoint['param_schedulers']): | |
scheduler.load_state_dict(ckpt_scheduler) | |
self._has_loaded = True | |
self.logger.info(f'resumed epoch: {self.epoch}, iter: {self.iter}') | |
# def load_checkpoint(self, | |
# filename: str, | |
# model, | |
# map_location: Union[str, Callable] = 'cpu', | |
# strict: bool = False, | |
# revise_keys: list = [(r'^module.', '')]): | |
# """Load checkpoint from given ``filename``. | |
# | |
# Args: | |
# filename (str): Accept local filepath, URL, ``torchvision://xxx``, | |
# ``open-mmlab://xxx``. | |
# map_location (str or callable): A string or a callable function to | |
# specifying how to remap storage locations. | |
# Defaults to 'cpu'. | |
# strict (bool): strict (bool): Whether to allow different params for | |
# the model and checkpoint. | |
# revise_keys (list): A list of customized keywords to modify the | |
# state_dict in checkpoint. Each item is a (pattern, replacement) | |
# pair of the regular expression operations. Defaults to strip | |
# the prefix 'module.' by [(r'^module\\.', '')]. | |
# """ | |
# checkpoint = _load_checkpoint(filename, map_location=map_location) | |
# | |
# if is_model_wrapper(model): | |
# model = model.module | |
# else: | |
# model = model | |
# | |
# checkpoint = _load_checkpoint_to_model( | |
# model, checkpoint, strict, revise_keys=revise_keys) | |
# | |
# print(f'Load checkpoint from {filename}') | |
# | |
# return checkpoint | |
def load_checkpoint(self, model, file): | |
if isinstance(file, str): | |
file_path = file | |
state_dict = torch.load(file_path, map_location='cpu')['state_dict'] | |
elif isinstance(file, dict): | |
file_path = file['file_path'] | |
state_dict = torch.load(file_path, map_location='cpu')['state_dict'] | |
for delete_key in file['delete_keys']: | |
del state_dict[delete_key] | |
else: | |
raise TypeError('file must be str or dict') | |
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False) | |
print('load from:', file_path) | |
print('load model missing_keys:', missing_keys) | |
print('load model unexpected_keys:', unexpected_keys) | |
def save_checkpoint( | |
self, | |
out_dir: str, | |
filename: str, | |
file_client_args: Optional[dict] = None, | |
save_optimizer: bool = True, | |
save_param_scheduler: bool = True, | |
meta: dict = None, | |
by_epoch: bool = True, | |
backend_args: Optional[dict] = None, | |
): | |
"""Save checkpoints. | |
``CheckpointHook`` invokes this method to save checkpoints | |
periodically. | |
Args: | |
out_dir (str): The directory that checkpoints are saved. | |
filename (str): The checkpoint filename. | |
file_client_args (dict, optional): Arguments to instantiate a | |
FileClient. See :class:`mmengine.fileio.FileClient` for | |
details. Defaults to None. It will be deprecated in future. | |
Please use `backend_args` instead. | |
save_optimizer (bool): Whether to save the optimizer to | |
the checkpoint. Defaults to True. | |
save_param_scheduler (bool): Whether to save the param_scheduler | |
to the checkpoint. Defaults to True. | |
meta (dict, optional): The meta information to be saved in the | |
checkpoint. Defaults to None. | |
by_epoch (bool): Whether the scheduled momentum is updated by | |
epochs. Defaults to True. | |
backend_args (dict, optional): Arguments to instantiate the | |
prefix of uri corresponding backend. Defaults to None. | |
New in v0.2.0. | |
""" | |
if meta is None: | |
meta = {} | |
elif not isinstance(meta, dict): | |
raise TypeError( | |
f'meta should be a dict or None, but got {type(meta)}') | |
if by_epoch: | |
# self.epoch increments 1 after | |
# `self.call_hook('after_train_epoch)` but `save_checkpoint` is | |
# called by `after_train_epoch`` method of `CheckpointHook` so | |
# `epoch` should be `self.epoch + 1` | |
meta.update(epoch=self.epoch + 1, iter=self.iter) | |
else: | |
meta.update(epoch=self.epoch, iter=self.iter + 1) | |
if file_client_args is not None: | |
warnings.warn( | |
'"file_client_args" will be deprecated in future. ' | |
'Please use "backend_args" instead', DeprecationWarning) | |
if backend_args is not None: | |
raise ValueError( | |
'"file_client_args" and "backend_args" cannot be set at ' | |
'the same time.') | |
file_client = FileClient.infer_client(file_client_args, out_dir) | |
filepath = file_client.join_path(out_dir, filename) | |
else: | |
filepath = join_path( # type: ignore | |
out_dir, filename, backend_args=backend_args) | |
meta.update( | |
cfg=self.cfg.pretty_text, | |
seed=self.seed, | |
experiment_name=self.experiment_name, | |
time=time.strftime('%Y%m%d_%H%M%S', time.localtime()), | |
mmengine_version=mmengine.__version__ + get_git_hash()) | |
if hasattr(self.train_dataloader.dataset, 'metainfo'): | |
meta.update(dataset_meta=self.train_dataloader.dataset.metainfo) | |
if is_model_wrapper(self.model): | |
model = self.model.module | |
else: | |
model = self.model | |
checkpoint = { | |
'meta': meta, | |
'state_dict': weights_to_cpu(get_state_dict(model)), | |
'message_hub': self.message_hub.state_dict() | |
} | |
# save optimizer state dict to checkpoint | |
if save_optimizer: | |
if isinstance(self.optim_wrapper, OptimWrapper): | |
checkpoint['optimizer'] = self.optim_wrapper.state_dict() | |
else: | |
raise TypeError( | |
'self.optim_wrapper should be an `OptimWrapper` ' | |
'or `OptimWrapperDict` instance, but got ' | |
f'{self.optim_wrapper}') | |
# save param scheduler state dict | |
if save_param_scheduler and self.param_schedulers is None: | |
print_log( | |
'`save_param_scheduler` is True but `self.param_schedulers` ' | |
'is None, so skip saving parameter schedulers', | |
logger='current', | |
level=logging.WARNING) | |
save_param_scheduler = False | |
if save_param_scheduler: | |
if isinstance(self.param_schedulers, dict): | |
checkpoint['param_schedulers'] = dict() | |
for name, schedulers in self.param_schedulers.items(): | |
checkpoint['param_schedulers'][name] = [] | |
for scheduler in schedulers: | |
state_dict = scheduler.state_dict() | |
checkpoint['param_schedulers'][name].append(state_dict) | |
else: | |
checkpoint['param_schedulers'] = [] | |
for scheduler in self.param_schedulers: # type: ignore | |
state_dict = scheduler.state_dict() # type: ignore | |
checkpoint['param_schedulers'].append(state_dict) | |
self.call_hook('before_save_checkpoint', checkpoint=checkpoint) | |
save_checkpoint(checkpoint, filepath) | |
def dump_config(self) -> None: | |
version = '' | |
if len(self.trainer.loggers) > 0: | |
version = self.trainer.loggers[0].version | |
version = version if isinstance(version, str) else f"version_{version}" | |
if version == '': | |
# if no loggers, use default_root_dir | |
version = 'version' | |
"""Dump config to `work_dir`.""" | |
if self.cfg.filename is not None: | |
filename = osp.basename(self.cfg.filename) | |
else: | |
filename = f'{self.timestamp}.py' | |
path = f'{self.trainer.default_root_dir}/{version}_{filename}' | |
self.cfg.dump(path) | |
def _check_scheduler_cfg( | |
self, param_scheduler: Optional[Union[dict, list, | |
_ParamScheduler]]) -> None: | |
"""Parse `param_scheduler` to a list of parameter schedulers, or a | |
`dict` of which each value is a list of parameter schedulers. | |
If only one optimizer is used, the parsed config should be a | |
list of parameter scheduler configs or instances. If multiple | |
optimizers are used, the parsed config should be `dict`. | |
Its key should be consistent with the optimizer `dict` and its value | |
should be a list of parameter scheduler configs or instances. See | |
:meth:`build_param_scheduler` for more details. | |
Examples: | |
>>> # valid scheduler: | |
>>> # empty scheduler | |
>>> scheduler = None | |
>>> # Single scheduler | |
>>> scheduler = dict(type='MultiStepLR', milestones=[1, 2]) | |
>>> # Single list schedulers | |
>>> scheduler = [dict(type='MultiStepLR', milestones=[1, 2]), | |
>>> dict(type='MultiStepLR', milestones=[2, 3])] | |
>>> # `dict` of schedulers | |
>>> scheduler = dict(linear1=dict(type='MultiStepLR', milestones=[1, 2]), | |
>>> linear2=dict(type='MultiStepLR', milestones=[1, 2])) | |
>>> # `dict` of `list` of schedulers | |
>>> scheduler = dict(linear1=[dict(type='MultiStepLR', milestones=[1, 2])], | |
>>> linear2=[dict(type='MultiStepLR', milestones=[1, 2])]) | |
>>> # Single built scheduler | |
>>> from mmengine.optim import MultiStepLR | |
>>> scheduler = MultiStepLR(milestones=[1, 2], optimizer=optimizer) | |
>>> # Single built list schedulers | |
>>> scheduler = [MultiStepLR(milestones=[1, 2], optimizer=optimizer)] | |
>>> # dict of built scheduler | |
>>> scheduler = dict(linear1=MultiStepLR(milestones=[1, 2], optimizer=optimizer), | |
>>> linear2=MultiStepLR(milestones=[1, 2], optimizer=optimizer)) | |
>>> # dict of built list schedulers | |
>>> scheduler = dict(linear1=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)], | |
>>> linear2=[MultiStepLR(milestones=[1, 2], optimizer=optimizer)]) | |
Args: | |
param_scheduler (dict or list): The original parameter scheduler. | |
""" # noqa: E501 | |
param_schedulers: Union[dict, list, _ParamScheduler] | |
if param_scheduler is None: | |
return | |
if isinstance(param_scheduler, _ParamScheduler): | |
return | |
if is_seq_of(param_scheduler, _ParamScheduler): | |
return | |
if is_seq_of(param_scheduler, dict): | |
for _param_scheduler in param_scheduler: | |
assert 'type' in _param_scheduler, ( | |
'Each parameter scheduler should contain the key type, ' | |
f'but got {_param_scheduler}') | |
elif isinstance(param_scheduler, dict): | |
if 'type' not in param_scheduler: | |
for key, _param_scheduler in param_scheduler.items(): | |
assert isinstance( | |
_param_scheduler, | |
(dict, tuple, list, _ParamScheduler)), ( | |
'Each value of `param_scheduler` should be a ' | |
f'dict or a list, but got {_param_scheduler} with ' | |
f'type {type(_ParamScheduler)}') | |
else: | |
raise TypeError( | |
'`param_scheduler` should be a `_ParamScheduler`, `dict`, ' | |
f'list or a tuple, but got {type(param_scheduler)}. If ' | |
'`param_scheduler` is a list of dict, it means a list of ' | |
'scheduler configs for single optimizer. If it is a dict and ' | |
'contains key `type`, it means a scheduler config for a ' | |
'single optimizer. If it does not contain key `type`, it ' | |
'means multiple lists of schedulers for multiple optimizers.') | |
def _log_env(self, env_cfg: dict) -> None: | |
"""Logging environment information of the current task. | |
Args: | |
env_cfg (dict): The environment config of the runner. | |
""" | |
# Collect and log environment information. | |
env = collect_env() | |
runtime_env = OrderedDict() | |
runtime_env.update(env_cfg) | |
runtime_env.update(self._randomness_cfg) | |
runtime_env['Distributed launcher'] = self._launcher | |
runtime_env['Distributed training'] = self._distributed | |
runtime_env['GPU number'] = self._world_size | |
env_info = '\n ' + '\n '.join(f'{k}: {v}' | |
for k, v in env.items()) | |
runtime_env_info = '\n ' + '\n '.join( | |
f'{k}: {v}' for k, v in runtime_env.items()) | |
dash_line = '-' * 60 | |
self.logger.info('\n' + dash_line + '\nSystem environment:' + | |
env_info + '\n' | |
'\nRuntime environment:' + runtime_env_info + '\n' + | |
dash_line + '\n') | |
self.logger.info(f'Config:\n{self.cfg.pretty_text}') |