RSPrompter / mmpl /models /pler /seg_samdet.py
KyanChen's picture
Upload 159 files
1c3eb47
raw
history blame
6.26 kB
import torch
from mmengine.structures import InstanceData
from typing import List, Any
from mmpl.registry import MODELS
from mmseg.utils import SampleList
from .base_pler import BasePLer
import torch.nn.functional as F
from modules.sam import sam_model_registry
@MODELS.register_module()
class SegSAMDetPLer(BasePLer):
def __init__(self,
whole_model,
backbone,
neck=None,
panoptic_head=None,
need_train_names=None,
train_cfg=None,
test_cfg=None,
*args, **kwargs):
super().__init__(*args, **kwargs)
self.save_hyperparameters()
self.need_train_names = need_train_names
self.whole_model = MODELS.build(whole_model)
backbone_type = backbone.pop('type')
self.backbone = sam_model_registry[backbone_type](**backbone)
if neck is not None:
self.neck = MODELS.build(neck)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
def setup(self, stage: str) -> None:
super().setup(stage)
if self.need_train_names is not None:
self._set_grad(self.need_train_names, noneed_train_names=[])
def init_weights(self):
import ipdb; ipdb.set_trace()
pass
def train(self, mode=True):
if self.need_train_names is not None:
return self._set_train_module(mode, self.need_train_names)
else:
super().train(mode)
return self
def validation_step(self, batch, batch_idx):
data = self.whole_model.data_preprocessor(batch, False)
batch_data_samples = self.whole_model._run_forward(data, mode='predict') # type: ignore
batch_inputs = data['inputs']
feat, inter_features = self.backbone.image_encoder(batch_inputs)
# import ipdb; ipdb.set_trace()
for idx, data_sample in enumerate(batch_data_samples):
bboxes = data_sample.pred_instances['bboxes']
ori_img_shape = data_sample.ori_shape
if len(bboxes) == 0:
im_mask = torch.zeros(
0,
ori_img_shape[0],
ori_img_shape[1],
device=self.device,
dtype=torch.bool)
else:
scale_factor = data_sample.scale_factor
repeat_num = int(bboxes.size(-1) / 2)
scale_factor = bboxes.new_tensor(scale_factor).repeat((1, repeat_num))
bboxes = bboxes * scale_factor
# Embed prompts
sparse_embeddings, dense_embeddings = self.backbone.prompt_encoder(
points=None,
boxes=bboxes,
masks=None,
)
# Predict masks
low_res_masks, iou_predictions = self.backbone.mask_decoder(
image_embeddings=feat[idx:idx + 1],
image_pe=self.backbone.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
# Upscale the masks to the original image resolution
im_mask = F.interpolate(low_res_masks, ori_img_shape, mode="bilinear", align_corners=False)
im_mask = im_mask > 0
im_mask = im_mask.squeeze(1)
data_sample.pred_instances.masks = im_mask
self.val_evaluator.update(batch, batch_data_samples)
def training_step(self, batch, batch_idx):
data = self.whole_model.data_preprocessor(batch, True)
losses = self.whole_model._run_forward(data, mode='loss') # type: ignore
parsed_losses, log_vars = self.parse_losses(losses)
log_vars = {f'train_{k}': v for k, v in log_vars.items()}
log_vars['loss'] = parsed_losses
self.log_dict(log_vars, prog_bar=True)
return log_vars
def on_before_optimizer_step(self, optimizer) -> None:
self.log_grad(module=self.whole_model)
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int = 0) -> Any:
data = self.whole_model.data_preprocessor(batch, False)
batch_data_samples = self.whole_model._run_forward(data, mode='predict') # type: ignore
batch_inputs = data['inputs']
feat, inter_features = self.backbone.image_encoder(batch_inputs)
# import ipdb; ipdb.set_trace()
for idx, data_sample in enumerate(batch_data_samples):
bboxes = data_sample.pred_instances['bboxes']
ori_img_shape = data_sample.ori_shape
if len(bboxes) == 0:
im_mask = torch.zeros(
0,
ori_img_shape[0],
ori_img_shape[1],
device=self.device,
dtype=torch.bool)
else:
scale_factor = data_sample.scale_factor
repeat_num = int(bboxes.size(-1) / 2)
scale_factor = bboxes.new_tensor(scale_factor).repeat((1, repeat_num))
bboxes = bboxes * scale_factor
# Embed prompts
sparse_embeddings, dense_embeddings = self.backbone.prompt_encoder(
points=None,
boxes=bboxes,
masks=None,
)
# Predict masks
low_res_masks, iou_predictions = self.backbone.mask_decoder(
image_embeddings=feat[idx:idx + 1],
image_pe=self.backbone.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
# Upscale the masks to the original image resolution
im_mask = F.interpolate(low_res_masks, ori_img_shape, mode="bilinear", align_corners=False)
im_mask = im_mask > 0
im_mask = im_mask.squeeze(1)
data_sample.pred_instances.masks = im_mask
return batch_data_samples