Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# Adapted from official impl at https://github.com/raoyongming/HorNet. | |
try: | |
import torch.fft | |
fft = True | |
except ImportError: | |
fft = None | |
import copy | |
from functools import partial | |
from typing import Sequence | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint as checkpoint | |
from mmcv.cnn.bricks import DropPath | |
from mmpretrain.models.backbones.base_backbone import BaseBackbone | |
from mmpretrain.registry import MODELS | |
from ..utils import LayerScale | |
def get_dwconv(dim, kernel_size, bias=True): | |
"""build a pepth-wise convolution.""" | |
return nn.Conv2d( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
padding=(kernel_size - 1) // 2, | |
bias=bias, | |
groups=dim) | |
class HorNetLayerNorm(nn.Module): | |
"""An implementation of LayerNorm of HorNet. | |
The differences between HorNetLayerNorm & torch LayerNorm: | |
1. Supports two data formats channels_last or channels_first. | |
Args: | |
normalized_shape (int or list or torch.Size): input shape from an | |
expected input of size. | |
eps (float): a value added to the denominator for numerical stability. | |
Defaults to 1e-5. | |
data_format (str): The ordering of the dimensions in the inputs. | |
channels_last corresponds to inputs with shape (batch_size, height, | |
width, channels) while channels_first corresponds to inputs with | |
shape (batch_size, channels, height, width). | |
Defaults to 'channels_last'. | |
""" | |
def __init__(self, | |
normalized_shape, | |
eps=1e-6, | |
data_format='channels_last'): | |
super().__init__() | |
self.weight = nn.Parameter(torch.ones(normalized_shape)) | |
self.bias = nn.Parameter(torch.zeros(normalized_shape)) | |
self.eps = eps | |
self.data_format = data_format | |
if self.data_format not in ['channels_last', 'channels_first']: | |
raise ValueError( | |
'data_format must be channels_last or channels_first') | |
self.normalized_shape = (normalized_shape, ) | |
def forward(self, x): | |
if self.data_format == 'channels_last': | |
return F.layer_norm(x, self.normalized_shape, self.weight, | |
self.bias, self.eps) | |
elif self.data_format == 'channels_first': | |
u = x.mean(1, keepdim=True) | |
s = (x - u).pow(2).mean(1, keepdim=True) | |
x = (x - u) / torch.sqrt(s + self.eps) | |
x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
return x | |
class GlobalLocalFilter(nn.Module): | |
"""A GlobalLocalFilter of HorNet. | |
Args: | |
dim (int): Number of input channels. | |
h (int): Height of complex_weight. | |
Defaults to 14. | |
w (int): Width of complex_weight. | |
Defaults to 8. | |
""" | |
def __init__(self, dim, h=14, w=8): | |
super().__init__() | |
self.dw = nn.Conv2d( | |
dim // 2, | |
dim // 2, | |
kernel_size=3, | |
padding=1, | |
bias=False, | |
groups=dim // 2) | |
self.complex_weight = nn.Parameter( | |
torch.randn(dim // 2, h, w, 2, dtype=torch.float32) * 0.02) | |
self.pre_norm = HorNetLayerNorm( | |
dim, eps=1e-6, data_format='channels_first') | |
self.post_norm = HorNetLayerNorm( | |
dim, eps=1e-6, data_format='channels_first') | |
def forward(self, x): | |
x = self.pre_norm(x) | |
x1, x2 = torch.chunk(x, 2, dim=1) | |
x1 = self.dw(x1) | |
x2 = x2.to(torch.float32) | |
B, C, a, b = x2.shape | |
x2 = torch.fft.rfft2(x2, dim=(2, 3), norm='ortho') | |
weight = self.complex_weight | |
if not weight.shape[1:3] == x2.shape[2:4]: | |
weight = F.interpolate( | |
weight.permute(3, 0, 1, 2), | |
size=x2.shape[2:4], | |
mode='bilinear', | |
align_corners=True).permute(1, 2, 3, 0) | |
weight = torch.view_as_complex(weight.contiguous()) | |
x2 = x2 * weight | |
x2 = torch.fft.irfft2(x2, s=(a, b), dim=(2, 3), norm='ortho') | |
x = torch.cat([x1.unsqueeze(2), x2.unsqueeze(2)], | |
dim=2).reshape(B, 2 * C, a, b) | |
x = self.post_norm(x) | |
return x | |
class gnConv(nn.Module): | |
"""A gnConv of HorNet. | |
Args: | |
dim (int): Number of input channels. | |
order (int): Order of gnConv. | |
Defaults to 5. | |
dw_cfg (dict): The Config for dw conv. | |
Defaults to ``dict(type='DW', kernel_size=7)``. | |
scale (float): Scaling parameter of gflayer outputs. | |
Defaults to 1.0. | |
""" | |
def __init__(self, | |
dim, | |
order=5, | |
dw_cfg=dict(type='DW', kernel_size=7), | |
scale=1.0): | |
super().__init__() | |
self.order = order | |
self.dims = [dim // 2**i for i in range(order)] | |
self.dims.reverse() | |
self.proj_in = nn.Conv2d(dim, 2 * dim, 1) | |
cfg = copy.deepcopy(dw_cfg) | |
dw_type = cfg.pop('type') | |
assert dw_type in ['DW', 'GF'],\ | |
'dw_type should be `DW` or `GF`' | |
if dw_type == 'DW': | |
self.dwconv = get_dwconv(sum(self.dims), **cfg) | |
elif dw_type == 'GF': | |
self.dwconv = GlobalLocalFilter(sum(self.dims), **cfg) | |
self.proj_out = nn.Conv2d(dim, dim, 1) | |
self.projs = nn.ModuleList([ | |
nn.Conv2d(self.dims[i], self.dims[i + 1], 1) | |
for i in range(order - 1) | |
]) | |
self.scale = scale | |
def forward(self, x): | |
x = self.proj_in(x) | |
y, x = torch.split(x, (self.dims[0], sum(self.dims)), dim=1) | |
x = self.dwconv(x) * self.scale | |
dw_list = torch.split(x, self.dims, dim=1) | |
x = y * dw_list[0] | |
for i in range(self.order - 1): | |
x = self.projs[i](x) * dw_list[i + 1] | |
x = self.proj_out(x) | |
return x | |
class HorNetBlock(nn.Module): | |
"""A block of HorNet. | |
Args: | |
dim (int): Number of input channels. | |
order (int): Order of gnConv. | |
Defaults to 5. | |
dw_cfg (dict): The Config for dw conv. | |
Defaults to ``dict(type='DW', kernel_size=7)``. | |
scale (float): Scaling parameter of gflayer outputs. | |
Defaults to 1.0. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
use_layer_scale (bool): Whether to use use_layer_scale in HorNet | |
block. Defaults to True. | |
""" | |
def __init__(self, | |
dim, | |
order=5, | |
dw_cfg=dict(type='DW', kernel_size=7), | |
scale=1.0, | |
drop_path_rate=0., | |
use_layer_scale=True): | |
super().__init__() | |
self.out_channels = dim | |
self.norm1 = HorNetLayerNorm( | |
dim, eps=1e-6, data_format='channels_first') | |
self.gnconv = gnConv(dim, order, dw_cfg, scale) | |
self.norm2 = HorNetLayerNorm(dim, eps=1e-6) | |
self.pwconv1 = nn.Linear(dim, 4 * dim) | |
self.act = nn.GELU() | |
self.pwconv2 = nn.Linear(4 * dim, dim) | |
if use_layer_scale: | |
self.gamma1 = LayerScale(dim, data_format='channels_first') | |
self.gamma2 = LayerScale(dim) | |
else: | |
self.gamma1, self.gamma2 = nn.Identity(), nn.Identity() | |
self.drop_path = DropPath( | |
drop_path_rate) if drop_path_rate > 0. else nn.Identity() | |
def forward(self, x): | |
x = x + self.drop_path(self.gamma1(self.gnconv(self.norm1(x)))) | |
input = x | |
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) | |
x = self.norm2(x) | |
x = self.pwconv1(x) | |
x = self.act(x) | |
x = self.pwconv2(x) | |
x = self.gamma2(x) | |
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) | |
x = input + self.drop_path(x) | |
return x | |
class HorNet(BaseBackbone): | |
"""HorNet backbone. | |
A PyTorch implementation of paper `HorNet: Efficient High-Order Spatial | |
Interactions with Recursive Gated Convolutions | |
<https://arxiv.org/abs/2207.14284>`_ . | |
Inspiration from https://github.com/raoyongming/HorNet | |
Args: | |
arch (str | dict): HorNet architecture. | |
If use string, choose from 'tiny', 'small', 'base' and 'large'. | |
If use dict, it should have below keys: | |
- **base_dim** (int): The base dimensions of embedding. | |
- **depths** (List[int]): The number of blocks in each stage. | |
- **orders** (List[int]): The number of order of gnConv in each | |
stage. | |
- **dw_cfg** (List[dict]): The Config for dw conv. | |
Defaults to 'tiny'. | |
in_channels (int): Number of input image channels. Defaults to 3. | |
drop_path_rate (float): Stochastic depth rate. Defaults to 0. | |
scale (float): Scaling parameter of gflayer outputs. Defaults to 1/3. | |
use_layer_scale (bool): Whether to use use_layer_scale in HorNet | |
block. Defaults to True. | |
out_indices (Sequence[int]): Output from which stages. | |
Default: ``(3, )``. | |
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). | |
-1 means not freezing any parameters. Defaults to -1. | |
with_cp (bool): Use checkpoint or not. Using checkpoint will save some | |
memory while slowing down the training speed. Defaults to False. | |
gap_before_final_norm (bool): Whether to globally average the feature | |
map before the final norm layer. In the official repo, it's only | |
used in classification task. Defaults to True. | |
init_cfg (dict, optional): The Config for initialization. | |
Defaults to None. | |
""" | |
arch_zoo = { | |
**dict.fromkeys(['t', 'tiny'], | |
{'base_dim': 64, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}), | |
**dict.fromkeys(['t-gf', 'tiny-gf'], | |
{'base_dim': 64, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [ | |
dict(type='DW', kernel_size=7), | |
dict(type='DW', kernel_size=7), | |
dict(type='GF', h=14, w=8), | |
dict(type='GF', h=7, w=4)]}), | |
**dict.fromkeys(['s', 'small'], | |
{'base_dim': 96, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}), | |
**dict.fromkeys(['s-gf', 'small-gf'], | |
{'base_dim': 96, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [ | |
dict(type='DW', kernel_size=7), | |
dict(type='DW', kernel_size=7), | |
dict(type='GF', h=14, w=8), | |
dict(type='GF', h=7, w=4)]}), | |
**dict.fromkeys(['b', 'base'], | |
{'base_dim': 128, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}), | |
**dict.fromkeys(['b-gf', 'base-gf'], | |
{'base_dim': 128, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [ | |
dict(type='DW', kernel_size=7), | |
dict(type='DW', kernel_size=7), | |
dict(type='GF', h=14, w=8), | |
dict(type='GF', h=7, w=4)]}), | |
**dict.fromkeys(['b-gf384', 'base-gf384'], | |
{'base_dim': 128, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [ | |
dict(type='DW', kernel_size=7), | |
dict(type='DW', kernel_size=7), | |
dict(type='GF', h=24, w=12), | |
dict(type='GF', h=13, w=7)]}), | |
**dict.fromkeys(['l', 'large'], | |
{'base_dim': 192, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [dict(type='DW', kernel_size=7)] * 4}), | |
**dict.fromkeys(['l-gf', 'large-gf'], | |
{'base_dim': 192, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [ | |
dict(type='DW', kernel_size=7), | |
dict(type='DW', kernel_size=7), | |
dict(type='GF', h=14, w=8), | |
dict(type='GF', h=7, w=4)]}), | |
**dict.fromkeys(['l-gf384', 'large-gf384'], | |
{'base_dim': 192, | |
'depths': [2, 3, 18, 2], | |
'orders': [2, 3, 4, 5], | |
'dw_cfg': [ | |
dict(type='DW', kernel_size=7), | |
dict(type='DW', kernel_size=7), | |
dict(type='GF', h=24, w=12), | |
dict(type='GF', h=13, w=7)]}), | |
} # yapf: disable | |
def __init__(self, | |
arch='tiny', | |
in_channels=3, | |
drop_path_rate=0., | |
scale=1 / 3, | |
use_layer_scale=True, | |
out_indices=(3, ), | |
frozen_stages=-1, | |
with_cp=False, | |
gap_before_final_norm=True, | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
if fft is None: | |
raise RuntimeError( | |
'Failed to import torch.fft. Please install "torch>=1.7".') | |
if isinstance(arch, str): | |
arch = arch.lower() | |
assert arch in set(self.arch_zoo), \ | |
f'Arch {arch} is not in default archs {set(self.arch_zoo)}' | |
self.arch_settings = self.arch_zoo[arch] | |
else: | |
essential_keys = {'base_dim', 'depths', 'orders', 'dw_cfg'} | |
assert isinstance(arch, dict) and set(arch) == essential_keys, \ | |
f'Custom arch needs a dict with keys {essential_keys}' | |
self.arch_settings = arch | |
self.scale = scale | |
self.out_indices = out_indices | |
self.frozen_stages = frozen_stages | |
self.with_cp = with_cp | |
self.gap_before_final_norm = gap_before_final_norm | |
base_dim = self.arch_settings['base_dim'] | |
dims = list(map(lambda x: 2**x * base_dim, range(4))) | |
self.downsample_layers = nn.ModuleList() | |
stem = nn.Sequential( | |
nn.Conv2d(in_channels, dims[0], kernel_size=4, stride=4), | |
HorNetLayerNorm(dims[0], eps=1e-6, data_format='channels_first')) | |
self.downsample_layers.append(stem) | |
for i in range(3): | |
downsample_layer = nn.Sequential( | |
HorNetLayerNorm( | |
dims[i], eps=1e-6, data_format='channels_first'), | |
nn.Conv2d(dims[i], dims[i + 1], kernel_size=2, stride=2), | |
) | |
self.downsample_layers.append(downsample_layer) | |
total_depth = sum(self.arch_settings['depths']) | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, total_depth) | |
] # stochastic depth decay rule | |
cur_block_idx = 0 | |
self.stages = nn.ModuleList() | |
for i in range(4): | |
stage = nn.Sequential(*[ | |
HorNetBlock( | |
dim=dims[i], | |
order=self.arch_settings['orders'][i], | |
dw_cfg=self.arch_settings['dw_cfg'][i], | |
scale=self.scale, | |
drop_path_rate=dpr[cur_block_idx + j], | |
use_layer_scale=use_layer_scale) | |
for j in range(self.arch_settings['depths'][i]) | |
]) | |
self.stages.append(stage) | |
cur_block_idx += self.arch_settings['depths'][i] | |
if isinstance(out_indices, int): | |
out_indices = [out_indices] | |
assert isinstance(out_indices, Sequence), \ | |
f'"out_indices" must by a sequence or int, ' \ | |
f'get {type(out_indices)} instead.' | |
out_indices = list(out_indices) | |
for i, index in enumerate(out_indices): | |
if index < 0: | |
out_indices[i] = len(self.stages) + index | |
assert 0 <= out_indices[i] <= len(self.stages), \ | |
f'Invalid out_indices {index}.' | |
self.out_indices = out_indices | |
norm_layer = partial( | |
HorNetLayerNorm, eps=1e-6, data_format='channels_first') | |
for i_layer in out_indices: | |
layer = norm_layer(dims[i_layer]) | |
layer_name = f'norm{i_layer}' | |
self.add_module(layer_name, layer) | |
def train(self, mode=True): | |
super(HorNet, self).train(mode) | |
self._freeze_stages() | |
def _freeze_stages(self): | |
for i in range(0, self.frozen_stages + 1): | |
# freeze patch embed | |
m = self.downsample_layers[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
# freeze blocks | |
m = self.stages[i] | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
if i in self.out_indices: | |
# freeze norm | |
m = getattr(self, f'norm{i + 1}') | |
m.eval() | |
for param in m.parameters(): | |
param.requires_grad = False | |
def forward(self, x): | |
outs = [] | |
for i in range(4): | |
x = self.downsample_layers[i](x) | |
if self.with_cp: | |
x = checkpoint.checkpoint_sequential(self.stages[i], | |
len(self.stages[i]), x) | |
else: | |
x = self.stages[i](x) | |
if i in self.out_indices: | |
norm_layer = getattr(self, f'norm{i}') | |
if self.gap_before_final_norm: | |
gap = x.mean([-2, -1], keepdim=True) | |
outs.append(norm_layer(gap).flatten(1)) | |
else: | |
# The output of LayerNorm2d may be discontiguous, which | |
# may cause some problem in the downstream tasks | |
outs.append(norm_layer(x).contiguous()) | |
return tuple(outs) | |