KyanChen's picture
Upload 89 files
3094730
# Copyright (c) OpenMMLab. All rights reserved.
import math
from copy import deepcopy
from typing import List, Sequence, Tuple, Union
import cv2
import mmcv
import numpy as np
import torch
from mmcv.transforms import BaseTransform, Compose
from mmcv.transforms.utils import cache_randomness
from mmdet.datasets.transforms import LoadAnnotations as MMDET_LoadAnnotations
from mmdet.datasets.transforms import Resize as MMDET_Resize
from mmdet.structures.bbox import (HorizontalBoxes, autocast_box_type,
get_box_type)
from mmdet.structures.mask import PolygonMasks
from numpy import random
from mmyolo.registry import TRANSFORMS
# TODO: Waiting for MMCV support
TRANSFORMS.register_module(module=Compose, force=True)
@TRANSFORMS.register_module()
class YOLOv5KeepRatioResize(MMDET_Resize):
"""Resize images & bbox(if existed).
This transform resizes the input image according to ``scale``.
Bboxes (if existed) are then resized with the same scale factor.
Required Keys:
- img (np.uint8)
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
Modified Keys:
- img (np.uint8)
- img_shape (tuple)
- gt_bboxes (optional)
- scale (float)
Added Keys:
- scale_factor (np.float32)
Args:
scale (Union[int, Tuple[int, int]]): Images scales for resizing.
"""
def __init__(self,
scale: Union[int, Tuple[int, int]],
keep_ratio: bool = True,
**kwargs):
assert keep_ratio is True
super().__init__(scale=scale, keep_ratio=True, **kwargs)
@staticmethod
def _get_rescale_ratio(old_size: Tuple[int, int],
scale: Union[float, Tuple[int]]) -> float:
"""Calculate the ratio for rescaling.
Args:
old_size (tuple[int]): The old size (w, h) of image.
scale (float | tuple[int]): The scaling factor or maximum size.
If it is a float number, then the image will be rescaled by
this factor, else if it is a tuple of 2 integers, then
the image will be rescaled as large as possible within
the scale.
Returns:
float: The resize ratio.
"""
w, h = old_size
if isinstance(scale, (float, int)):
if scale <= 0:
raise ValueError(f'Invalid scale {scale}, must be positive.')
scale_factor = scale
elif isinstance(scale, tuple):
max_long_edge = max(scale)
max_short_edge = min(scale)
scale_factor = min(max_long_edge / max(h, w),
max_short_edge / min(h, w))
else:
raise TypeError('Scale must be a number or tuple of int, '
f'but got {type(scale)}')
return scale_factor
def _resize_img(self, results: dict):
"""Resize images with ``results['scale']``."""
assert self.keep_ratio is True
if results.get('img', None) is not None:
image = results['img']
original_h, original_w = image.shape[:2]
ratio = self._get_rescale_ratio((original_h, original_w),
self.scale)
if ratio != 1:
# resize image according to the ratio
image = mmcv.imrescale(
img=image,
scale=ratio,
interpolation='area' if ratio < 1 else 'bilinear',
backend=self.backend)
resized_h, resized_w = image.shape[:2]
scale_ratio = resized_h / original_h
scale_factor = (scale_ratio, scale_ratio)
results['img'] = image
results['img_shape'] = image.shape[:2]
results['scale_factor'] = scale_factor
@TRANSFORMS.register_module()
class LetterResize(MMDET_Resize):
"""Resize and pad image while meeting stride-multiple constraints.
Required Keys:
- img (np.uint8)
- batch_shape (np.int64) (optional)
Modified Keys:
- img (np.uint8)
- img_shape (tuple)
- gt_bboxes (optional)
Added Keys:
- pad_param (np.float32)
Args:
scale (Union[int, Tuple[int, int]]): Images scales for resizing.
pad_val (dict): Padding value. Defaults to dict(img=0, seg=255).
use_mini_pad (bool): Whether using minimum rectangle padding.
Defaults to True
stretch_only (bool): Whether stretch to the specified size directly.
Defaults to False
allow_scale_up (bool): Allow scale up when ratio > 1. Defaults to True
"""
def __init__(self,
scale: Union[int, Tuple[int, int]],
pad_val: dict = dict(img=0, mask=0, seg=255),
use_mini_pad: bool = False,
stretch_only: bool = False,
allow_scale_up: bool = True,
**kwargs):
super().__init__(scale=scale, keep_ratio=True, **kwargs)
self.pad_val = pad_val
if isinstance(pad_val, (int, float)):
pad_val = dict(img=pad_val, seg=255)
assert isinstance(
pad_val, dict), f'pad_val must be dict, but got {type(pad_val)}'
self.use_mini_pad = use_mini_pad
self.stretch_only = stretch_only
self.allow_scale_up = allow_scale_up
def _resize_img(self, results: dict):
"""Resize images with ``results['scale']``."""
image = results.get('img', None)
if image is None:
return
# Use batch_shape if a batch_shape policy is configured
if 'batch_shape' in results:
scale = tuple(results['batch_shape']) # hw
else:
scale = self.scale[::-1] # wh -> hw
image_shape = image.shape[:2] # height, width
# Scale ratio (new / old)
ratio = min(scale[0] / image_shape[0], scale[1] / image_shape[1])
# only scale down, do not scale up (for better test mAP)
if not self.allow_scale_up:
ratio = min(ratio, 1.0)
ratio = [ratio, ratio] # float -> (float, float) for (height, width)
# compute the best size of the image
no_pad_shape = (int(round(image_shape[0] * ratio[0])),
int(round(image_shape[1] * ratio[1])))
# padding height & width
padding_h, padding_w = [
scale[0] - no_pad_shape[0], scale[1] - no_pad_shape[1]
]
if self.use_mini_pad:
# minimum rectangle padding
padding_w, padding_h = np.mod(padding_w, 32), np.mod(padding_h, 32)
elif self.stretch_only:
# stretch to the specified size directly
padding_h, padding_w = 0.0, 0.0
no_pad_shape = (scale[0], scale[1])
ratio = [scale[0] / image_shape[0],
scale[1] / image_shape[1]] # height, width ratios
if image_shape != no_pad_shape:
# compare with no resize and padding size
image = mmcv.imresize(
image, (no_pad_shape[1], no_pad_shape[0]),
interpolation=self.interpolation,
backend=self.backend)
scale_factor = (ratio[1], ratio[0]) # mmcv scale factor is (w, h)
if 'scale_factor' in results:
results['scale_factor_origin'] = results['scale_factor']
results['scale_factor'] = scale_factor
# padding
top_padding, left_padding = int(round(padding_h // 2 - 0.1)), int(
round(padding_w // 2 - 0.1))
bottom_padding = padding_h - top_padding
right_padding = padding_w - left_padding
padding_list = [
top_padding, bottom_padding, left_padding, right_padding
]
if top_padding != 0 or bottom_padding != 0 or \
left_padding != 0 or right_padding != 0:
pad_val = self.pad_val.get('img', 0)
if isinstance(pad_val, int) and image.ndim == 3:
pad_val = tuple(pad_val for _ in range(image.shape[2]))
image = mmcv.impad(
img=image,
padding=(padding_list[2], padding_list[0], padding_list[3],
padding_list[1]),
pad_val=pad_val,
padding_mode='constant')
results['img'] = image
results['img_shape'] = image.shape
if 'pad_param' in results:
results['pad_param_origin'] = results['pad_param'] * \
np.repeat(ratio, 2)
results['pad_param'] = np.array(padding_list, dtype=np.float32)
def _resize_masks(self, results: dict):
"""Resize masks with ``results['scale']``"""
if results.get('gt_masks', None) is None:
return
gt_masks = results['gt_masks']
assert isinstance(
gt_masks, PolygonMasks
), f'Only supports PolygonMasks, but got {type(gt_masks)}'
# resize the gt_masks
gt_mask_h = results['gt_masks'].height * results['scale_factor'][1]
gt_mask_w = results['gt_masks'].width * results['scale_factor'][0]
gt_masks = results['gt_masks'].resize(
(int(round(gt_mask_h)), int(round(gt_mask_w))))
top_padding, _, left_padding, _ = results['pad_param']
if int(left_padding) != 0:
gt_masks = gt_masks.translate(
out_shape=results['img_shape'][:2],
offset=int(left_padding),
direction='horizontal')
if int(top_padding) != 0:
gt_masks = gt_masks.translate(
out_shape=results['img_shape'][:2],
offset=int(top_padding),
direction='vertical')
results['gt_masks'] = gt_masks
def _resize_bboxes(self, results: dict):
"""Resize bounding boxes with ``results['scale_factor']``."""
if results.get('gt_bboxes', None) is None:
return
results['gt_bboxes'].rescale_(results['scale_factor'])
if len(results['pad_param']) != 4:
return
results['gt_bboxes'].translate_(
(results['pad_param'][2], results['pad_param'][0]))
if self.clip_object_border:
results['gt_bboxes'].clip_(results['img_shape'])
def transform(self, results: dict) -> dict:
results = super().transform(results)
if 'scale_factor_origin' in results:
scale_factor_origin = results.pop('scale_factor_origin')
results['scale_factor'] = (results['scale_factor'][0] *
scale_factor_origin[0],
results['scale_factor'][1] *
scale_factor_origin[1])
if 'pad_param_origin' in results:
pad_param_origin = results.pop('pad_param_origin')
results['pad_param'] += pad_param_origin
return results
# TODO: Check if it can be merged with mmdet.YOLOXHSVRandomAug
@TRANSFORMS.register_module()
class YOLOv5HSVRandomAug(BaseTransform):
"""Apply HSV augmentation to image sequentially.
Required Keys:
- img
Modified Keys:
- img
Args:
hue_delta ([int, float]): delta of hue. Defaults to 0.015.
saturation_delta ([int, float]): delta of saturation. Defaults to 0.7.
value_delta ([int, float]): delta of value. Defaults to 0.4.
"""
def __init__(self,
hue_delta: Union[int, float] = 0.015,
saturation_delta: Union[int, float] = 0.7,
value_delta: Union[int, float] = 0.4):
self.hue_delta = hue_delta
self.saturation_delta = saturation_delta
self.value_delta = value_delta
def transform(self, results: dict) -> dict:
"""The HSV augmentation transform function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
hsv_gains = \
random.uniform(-1, 1, 3) * \
[self.hue_delta, self.saturation_delta, self.value_delta] + 1
hue, sat, val = cv2.split(
cv2.cvtColor(results['img'], cv2.COLOR_BGR2HSV))
table_list = np.arange(0, 256, dtype=hsv_gains.dtype)
lut_hue = ((table_list * hsv_gains[0]) % 180).astype(np.uint8)
lut_sat = np.clip(table_list * hsv_gains[1], 0, 255).astype(np.uint8)
lut_val = np.clip(table_list * hsv_gains[2], 0, 255).astype(np.uint8)
im_hsv = cv2.merge(
(cv2.LUT(hue, lut_hue), cv2.LUT(sat,
lut_sat), cv2.LUT(val, lut_val)))
results['img'] = cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(hue_delta={self.hue_delta}, '
repr_str += f'saturation_delta={self.saturation_delta}, '
repr_str += f'value_delta={self.value_delta})'
return repr_str
@TRANSFORMS.register_module()
class LoadAnnotations(MMDET_LoadAnnotations):
"""Because the yolo series does not need to consider ignore bboxes for the
time being, in order to speed up the pipeline, it can be excluded in
advance."""
def __init__(self,
mask2bbox: bool = False,
poly2mask: bool = False,
**kwargs) -> None:
self.mask2bbox = mask2bbox
assert not poly2mask, 'Does not support BitmapMasks considering ' \
'that bitmap consumes more memory.'
super().__init__(poly2mask=poly2mask, **kwargs)
if self.mask2bbox:
assert self.with_mask, 'Using mask2bbox requires ' \
'with_mask is True.'
self._mask_ignore_flag = None
def transform(self, results: dict) -> dict:
"""Function to load multiple types annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded bounding box, label and
semantic segmentation.
"""
if self.mask2bbox:
self._load_masks(results)
if self.with_label:
self._load_labels(results)
self._update_mask_ignore_data(results)
gt_bboxes = results['gt_masks'].get_bboxes(dst_type='hbox')
results['gt_bboxes'] = gt_bboxes
else:
results = super().transform(results)
self._update_mask_ignore_data(results)
return results
def _update_mask_ignore_data(self, results: dict) -> None:
if 'gt_masks' not in results:
return
if 'gt_bboxes_labels' in results and len(
results['gt_bboxes_labels']) != len(results['gt_masks']):
assert len(results['gt_bboxes_labels']) == len(
self._mask_ignore_flag)
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
self._mask_ignore_flag]
if 'gt_bboxes' in results and len(results['gt_bboxes']) != len(
results['gt_masks']):
assert len(results['gt_bboxes']) == len(self._mask_ignore_flag)
results['gt_bboxes'] = results['gt_bboxes'][self._mask_ignore_flag]
def _load_bboxes(self, results: dict):
"""Private function to load bounding box annotations.
Note: BBoxes with ignore_flag of 1 is not considered.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded bounding box annotations.
"""
gt_bboxes = []
gt_ignore_flags = []
for instance in results.get('instances', []):
if instance['ignore_flag'] == 0:
gt_bboxes.append(instance['bbox'])
gt_ignore_flags.append(instance['ignore_flag'])
results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)
if self.box_type is None:
results['gt_bboxes'] = np.array(
gt_bboxes, dtype=np.float32).reshape((-1, 4))
else:
_, box_type_cls = get_box_type(self.box_type)
results['gt_bboxes'] = box_type_cls(gt_bboxes, dtype=torch.float32)
def _load_labels(self, results: dict):
"""Private function to load label annotations.
Note: BBoxes with ignore_flag of 1 is not considered.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
Returns:
dict: The dict contains loaded label annotations.
"""
gt_bboxes_labels = []
for instance in results.get('instances', []):
if instance['ignore_flag'] == 0:
gt_bboxes_labels.append(instance['bbox_label'])
results['gt_bboxes_labels'] = np.array(
gt_bboxes_labels, dtype=np.int64)
def _load_masks(self, results: dict) -> None:
"""Private function to load mask annotations.
Args:
results (dict): Result dict from :obj:``mmengine.BaseDataset``.
"""
gt_masks = []
gt_ignore_flags = []
self._mask_ignore_flag = []
for instance in results.get('instances', []):
if instance['ignore_flag'] == 0:
if 'mask' in instance:
gt_mask = instance['mask']
if isinstance(gt_mask, list):
gt_mask = [
np.array(polygon) for polygon in gt_mask
if len(polygon) % 2 == 0 and len(polygon) >= 6
]
if len(gt_mask) == 0:
# ignore
self._mask_ignore_flag.append(0)
else:
gt_masks.append(gt_mask)
gt_ignore_flags.append(instance['ignore_flag'])
self._mask_ignore_flag.append(1)
else:
raise NotImplementedError(
'Only supports mask annotations in polygon '
'format currently')
else:
# TODO: Actually, gt with bbox and without mask needs
# to be retained
self._mask_ignore_flag.append(0)
self._mask_ignore_flag = np.array(self._mask_ignore_flag, dtype=bool)
results['gt_ignore_flags'] = np.array(gt_ignore_flags, dtype=bool)
h, w = results['ori_shape']
gt_masks = PolygonMasks([mask for mask in gt_masks], h, w)
results['gt_masks'] = gt_masks
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(with_bbox={self.with_bbox}, '
repr_str += f'with_label={self.with_label}, '
repr_str += f'with_mask={self.with_mask}, '
repr_str += f'with_seg={self.with_seg}, '
repr_str += f'mask2bbox={self.mask2bbox}, '
repr_str += f'poly2mask={self.poly2mask}, '
repr_str += f"imdecode_backend='{self.imdecode_backend}', "
repr_str += f'file_client_args={self.file_client_args})'
return repr_str
@TRANSFORMS.register_module()
class YOLOv5RandomAffine(BaseTransform):
"""Random affine transform data augmentation in YOLOv5 and YOLOv8. It is
different from the implementation in YOLOX.
This operation randomly generates affine transform matrix which including
rotation, translation, shear and scaling transforms.
If you set use_mask_refine == True, the code will use the masks
annotation to refine the bbox.
Our implementation is slightly different from the official. In COCO
dataset, a gt may have multiple mask tags. The official YOLOv5
annotation file already combines the masks that an object has,
but our code takes into account the fact that an object has multiple masks.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- gt_masks (PolygonMasks) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
- gt_masks (PolygonMasks) (optional)
Args:
max_rotate_degree (float): Maximum degrees of rotation transform.
Defaults to 10.
max_translate_ratio (float): Maximum ratio of translation.
Defaults to 0.1.
scaling_ratio_range (tuple[float]): Min and max ratio of
scaling transform. Defaults to (0.5, 1.5).
max_shear_degree (float): Maximum degrees of shear
transform. Defaults to 2.
border (tuple[int]): Distance from width and height sides of input
image to adjust output shape. Only used in mosaic dataset.
Defaults to (0, 0).
border_val (tuple[int]): Border padding values of 3 channels.
Defaults to (114, 114, 114).
bbox_clip_border (bool, optional): Whether to clip the objects outside
the border of the image. In some dataset like MOT17, the gt bboxes
are allowed to cross the border of images. Therefore, we don't
need to clip the gt bboxes in these cases. Defaults to True.
min_bbox_size (float): Width and height threshold to filter bboxes.
If the height or width of a box is smaller than this value, it
will be removed. Defaults to 2.
min_area_ratio (float): Threshold of area ratio between
original bboxes and wrapped bboxes. If smaller than this value,
the box will be removed. Defaults to 0.1.
use_mask_refine (bool): Whether to refine bbox by mask.
max_aspect_ratio (float): Aspect ratio of width and height
threshold to filter bboxes. If max(h/w, w/h) larger than this
value, the box will be removed. Defaults to 20.
resample_num (int): Number of poly to resample to.
"""
def __init__(self,
max_rotate_degree: float = 10.0,
max_translate_ratio: float = 0.1,
scaling_ratio_range: Tuple[float, float] = (0.5, 1.5),
max_shear_degree: float = 2.0,
border: Tuple[int, int] = (0, 0),
border_val: Tuple[int, int, int] = (114, 114, 114),
bbox_clip_border: bool = True,
min_bbox_size: int = 2,
min_area_ratio: float = 0.1,
use_mask_refine: bool = False,
max_aspect_ratio: float = 20.,
resample_num: int = 1000):
assert 0 <= max_translate_ratio <= 1
assert scaling_ratio_range[0] <= scaling_ratio_range[1]
assert scaling_ratio_range[0] > 0
self.max_rotate_degree = max_rotate_degree
self.max_translate_ratio = max_translate_ratio
self.scaling_ratio_range = scaling_ratio_range
self.max_shear_degree = max_shear_degree
self.border = border
self.border_val = border_val
self.bbox_clip_border = bbox_clip_border
self.min_bbox_size = min_bbox_size
self.min_area_ratio = min_area_ratio
self.use_mask_refine = use_mask_refine
self.max_aspect_ratio = max_aspect_ratio
self.resample_num = resample_num
@autocast_box_type()
def transform(self, results: dict) -> dict:
"""The YOLOv5 random affine transform function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
img = results['img']
# self.border is wh format
height = img.shape[0] + self.border[1] * 2
width = img.shape[1] + self.border[0] * 2
# Note: Different from YOLOX
center_matrix = np.eye(3, dtype=np.float32)
center_matrix[0, 2] = -img.shape[1] / 2
center_matrix[1, 2] = -img.shape[0] / 2
warp_matrix, scaling_ratio = self._get_random_homography_matrix(
height, width)
warp_matrix = warp_matrix @ center_matrix
img = cv2.warpPerspective(
img,
warp_matrix,
dsize=(width, height),
borderValue=self.border_val)
results['img'] = img
results['img_shape'] = img.shape
img_h, img_w = img.shape[:2]
bboxes = results['gt_bboxes']
num_bboxes = len(bboxes)
if num_bboxes:
orig_bboxes = bboxes.clone()
if self.use_mask_refine and 'gt_masks' in results:
# If the dataset has annotations of mask,
# the mask will be used to refine bbox.
gt_masks = results['gt_masks']
gt_masks_resample = self.resample_masks(gt_masks)
gt_masks = self.warp_mask(gt_masks_resample, warp_matrix,
img_h, img_w)
# refine bboxes by masks
bboxes = gt_masks.get_bboxes(dst_type='hbox')
# filter bboxes outside image
valid_index = self.filter_gt_bboxes(orig_bboxes,
bboxes).numpy()
results['gt_masks'] = gt_masks[valid_index]
else:
bboxes.project_(warp_matrix)
if self.bbox_clip_border:
bboxes.clip_([height, width])
# filter bboxes
orig_bboxes.rescale_([scaling_ratio, scaling_ratio])
# Be careful: valid_index must convert to numpy,
# otherwise it will raise out of bounds when len(valid_index)=1
valid_index = self.filter_gt_bboxes(orig_bboxes,
bboxes).numpy()
if 'gt_masks' in results:
results['gt_masks'] = PolygonMasks(
results['gt_masks'].masks, img_h, img_w)
results['gt_bboxes'] = bboxes[valid_index]
results['gt_bboxes_labels'] = results['gt_bboxes_labels'][
valid_index]
results['gt_ignore_flags'] = results['gt_ignore_flags'][
valid_index]
return results
@staticmethod
def warp_poly(poly: np.ndarray, warp_matrix: np.ndarray, img_w: int,
img_h: int) -> np.ndarray:
"""Function to warp one mask and filter points outside image.
Args:
poly (np.ndarray): Segmentation annotation with shape (n, ) and
with format (x1, y1, x2, y2, ...).
warp_matrix (np.ndarray): Affine transformation matrix.
Shape: (3, 3).
img_w (int): Width of output image.
img_h (int): Height of output image.
"""
# TODO: Current logic may cause retained masks unusable for
# semantic segmentation training, which is same as official
# implementation.
poly = poly.reshape((-1, 2))
poly = np.concatenate((poly, np.ones(
(len(poly), 1), dtype=poly.dtype)),
axis=-1)
# transform poly
poly = poly @ warp_matrix.T
poly = poly[:, :2] / poly[:, 2:3]
# filter point outside image
x, y = poly.T
valid_ind_point = (x >= 0) & (y >= 0) & (x <= img_w) & (y <= img_h)
return poly[valid_ind_point].reshape(-1)
def warp_mask(self, gt_masks: PolygonMasks, warp_matrix: np.ndarray,
img_w: int, img_h: int) -> PolygonMasks:
"""Warp masks by warp_matrix and retain masks inside image after
warping.
Args:
gt_masks (PolygonMasks): Annotations of semantic segmentation.
warp_matrix (np.ndarray): Affine transformation matrix.
Shape: (3, 3).
img_w (int): Width of output image.
img_h (int): Height of output image.
Returns:
PolygonMasks: Masks after warping.
"""
masks = gt_masks.masks
new_masks = []
for poly_per_obj in masks:
warpped_poly_per_obj = []
# One gt may have multiple masks.
for poly in poly_per_obj:
valid_poly = self.warp_poly(poly, warp_matrix, img_w, img_h)
if len(valid_poly):
warpped_poly_per_obj.append(valid_poly.reshape(-1))
# If all the masks are invalid,
# add [0, 0, 0, 0, 0, 0,] here.
if not warpped_poly_per_obj:
# This will be filtered in function `filter_gt_bboxes`.
warpped_poly_per_obj = [
np.zeros(6, dtype=poly_per_obj[0].dtype)
]
new_masks.append(warpped_poly_per_obj)
gt_masks = PolygonMasks(new_masks, img_h, img_w)
return gt_masks
def resample_masks(self, gt_masks: PolygonMasks) -> PolygonMasks:
"""Function to resample each mask annotation with shape (2 * n, ) to
shape (resample_num * 2, ).
Args:
gt_masks (PolygonMasks): Annotations of semantic segmentation.
"""
masks = gt_masks.masks
new_masks = []
for poly_per_obj in masks:
resample_poly_per_obj = []
for poly in poly_per_obj:
poly = poly.reshape((-1, 2)) # xy
poly = np.concatenate((poly, poly[0:1, :]), axis=0)
x = np.linspace(0, len(poly) - 1, self.resample_num)
xp = np.arange(len(poly))
poly = np.concatenate([
np.interp(x, xp, poly[:, i]) for i in range(2)
]).reshape(2, -1).T.reshape(-1)
resample_poly_per_obj.append(poly)
new_masks.append(resample_poly_per_obj)
return PolygonMasks(new_masks, gt_masks.height, gt_masks.width)
def filter_gt_bboxes(self, origin_bboxes: HorizontalBoxes,
wrapped_bboxes: HorizontalBoxes) -> torch.Tensor:
"""Filter gt bboxes.
Args:
origin_bboxes (HorizontalBoxes): Origin bboxes.
wrapped_bboxes (HorizontalBoxes): Wrapped bboxes
Returns:
dict: The result dict.
"""
origin_w = origin_bboxes.widths
origin_h = origin_bboxes.heights
wrapped_w = wrapped_bboxes.widths
wrapped_h = wrapped_bboxes.heights
aspect_ratio = np.maximum(wrapped_w / (wrapped_h + 1e-16),
wrapped_h / (wrapped_w + 1e-16))
wh_valid_idx = (wrapped_w > self.min_bbox_size) & \
(wrapped_h > self.min_bbox_size)
area_valid_idx = wrapped_w * wrapped_h / (origin_w * origin_h +
1e-16) > self.min_area_ratio
aspect_ratio_valid_idx = aspect_ratio < self.max_aspect_ratio
return wh_valid_idx & area_valid_idx & aspect_ratio_valid_idx
@cache_randomness
def _get_random_homography_matrix(self, height: int,
width: int) -> Tuple[np.ndarray, float]:
"""Get random homography matrix.
Args:
height (int): Image height.
width (int): Image width.
Returns:
Tuple[np.ndarray, float]: The result of warp_matrix and
scaling_ratio.
"""
# Rotation
rotation_degree = random.uniform(-self.max_rotate_degree,
self.max_rotate_degree)
rotation_matrix = self._get_rotation_matrix(rotation_degree)
# Scaling
scaling_ratio = random.uniform(self.scaling_ratio_range[0],
self.scaling_ratio_range[1])
scaling_matrix = self._get_scaling_matrix(scaling_ratio)
# Shear
x_degree = random.uniform(-self.max_shear_degree,
self.max_shear_degree)
y_degree = random.uniform(-self.max_shear_degree,
self.max_shear_degree)
shear_matrix = self._get_shear_matrix(x_degree, y_degree)
# Translation
trans_x = random.uniform(0.5 - self.max_translate_ratio,
0.5 + self.max_translate_ratio) * width
trans_y = random.uniform(0.5 - self.max_translate_ratio,
0.5 + self.max_translate_ratio) * height
translate_matrix = self._get_translation_matrix(trans_x, trans_y)
warp_matrix = (
translate_matrix @ shear_matrix @ rotation_matrix @ scaling_matrix)
return warp_matrix, scaling_ratio
@staticmethod
def _get_rotation_matrix(rotate_degrees: float) -> np.ndarray:
"""Get rotation matrix.
Args:
rotate_degrees (float): Rotate degrees.
Returns:
np.ndarray: The rotation matrix.
"""
radian = math.radians(rotate_degrees)
rotation_matrix = np.array(
[[np.cos(radian), -np.sin(radian), 0.],
[np.sin(radian), np.cos(radian), 0.], [0., 0., 1.]],
dtype=np.float32)
return rotation_matrix
@staticmethod
def _get_scaling_matrix(scale_ratio: float) -> np.ndarray:
"""Get scaling matrix.
Args:
scale_ratio (float): Scale ratio.
Returns:
np.ndarray: The scaling matrix.
"""
scaling_matrix = np.array(
[[scale_ratio, 0., 0.], [0., scale_ratio, 0.], [0., 0., 1.]],
dtype=np.float32)
return scaling_matrix
@staticmethod
def _get_shear_matrix(x_shear_degrees: float,
y_shear_degrees: float) -> np.ndarray:
"""Get shear matrix.
Args:
x_shear_degrees (float): X shear degrees.
y_shear_degrees (float): Y shear degrees.
Returns:
np.ndarray: The shear matrix.
"""
x_radian = math.radians(x_shear_degrees)
y_radian = math.radians(y_shear_degrees)
shear_matrix = np.array([[1, np.tan(x_radian), 0.],
[np.tan(y_radian), 1, 0.], [0., 0., 1.]],
dtype=np.float32)
return shear_matrix
@staticmethod
def _get_translation_matrix(x: float, y: float) -> np.ndarray:
"""Get translation matrix.
Args:
x (float): X translation.
y (float): Y translation.
Returns:
np.ndarray: The translation matrix.
"""
translation_matrix = np.array([[1, 0., x], [0., 1, y], [0., 0., 1.]],
dtype=np.float32)
return translation_matrix
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(max_rotate_degree={self.max_rotate_degree}, '
repr_str += f'max_translate_ratio={self.max_translate_ratio}, '
repr_str += f'scaling_ratio_range={self.scaling_ratio_range}, '
repr_str += f'max_shear_degree={self.max_shear_degree}, '
repr_str += f'border={self.border}, '
repr_str += f'border_val={self.border_val}, '
repr_str += f'bbox_clip_border={self.bbox_clip_border})'
return repr_str
@TRANSFORMS.register_module()
class PPYOLOERandomDistort(BaseTransform):
"""Random hue, saturation, contrast and brightness distortion.
Required Keys:
- img
Modified Keys:
- img (np.float32)
Args:
hue_cfg (dict): Hue settings. Defaults to dict(min=-18,
max=18, prob=0.5).
saturation_cfg (dict): Saturation settings. Defaults to dict(
min=0.5, max=1.5, prob=0.5).
contrast_cfg (dict): Contrast settings. Defaults to dict(
min=0.5, max=1.5, prob=0.5).
brightness_cfg (dict): Brightness settings. Defaults to dict(
min=0.5, max=1.5, prob=0.5).
num_distort_func (int): The number of distort function. Defaults
to 4.
"""
def __init__(self,
hue_cfg: dict = dict(min=-18, max=18, prob=0.5),
saturation_cfg: dict = dict(min=0.5, max=1.5, prob=0.5),
contrast_cfg: dict = dict(min=0.5, max=1.5, prob=0.5),
brightness_cfg: dict = dict(min=0.5, max=1.5, prob=0.5),
num_distort_func: int = 4):
self.hue_cfg = hue_cfg
self.saturation_cfg = saturation_cfg
self.contrast_cfg = contrast_cfg
self.brightness_cfg = brightness_cfg
self.num_distort_func = num_distort_func
assert 0 < self.num_distort_func <= 4, \
'num_distort_func must > 0 and <= 4'
for cfg in [
self.hue_cfg, self.saturation_cfg, self.contrast_cfg,
self.brightness_cfg
]:
assert 0. <= cfg['prob'] <= 1., 'prob must >=0 and <=1'
def transform_hue(self, results):
"""Transform hue randomly."""
if random.uniform(0., 1.) >= self.hue_cfg['prob']:
return results
img = results['img']
delta = random.uniform(self.hue_cfg['min'], self.hue_cfg['max'])
u = np.cos(delta * np.pi)
w = np.sin(delta * np.pi)
delta_iq = np.array([[1.0, 0.0, 0.0], [0.0, u, -w], [0.0, w, u]])
rgb2yiq_matrix = np.array([[0.114, 0.587, 0.299],
[-0.321, -0.274, 0.596],
[0.311, -0.523, 0.211]])
yiq2rgb_matric = np.array([[1.0, -1.107, 1.705], [1.0, -0.272, -0.647],
[1.0, 0.956, 0.621]])
t = np.dot(np.dot(yiq2rgb_matric, delta_iq), rgb2yiq_matrix).T
img = np.dot(img, t)
results['img'] = img
return results
def transform_saturation(self, results):
"""Transform saturation randomly."""
if random.uniform(0., 1.) >= self.saturation_cfg['prob']:
return results
img = results['img']
delta = random.uniform(self.saturation_cfg['min'],
self.saturation_cfg['max'])
# convert bgr img to gray img
gray = img * np.array([[[0.114, 0.587, 0.299]]], dtype=np.float32)
gray = gray.sum(axis=2, keepdims=True)
gray *= (1.0 - delta)
img *= delta
img += gray
results['img'] = img
return results
def transform_contrast(self, results):
"""Transform contrast randomly."""
if random.uniform(0., 1.) >= self.contrast_cfg['prob']:
return results
img = results['img']
delta = random.uniform(self.contrast_cfg['min'],
self.contrast_cfg['max'])
img *= delta
results['img'] = img
return results
def transform_brightness(self, results):
"""Transform brightness randomly."""
if random.uniform(0., 1.) >= self.brightness_cfg['prob']:
return results
img = results['img']
delta = random.uniform(self.brightness_cfg['min'],
self.brightness_cfg['max'])
img += delta
results['img'] = img
return results
def transform(self, results: dict) -> dict:
"""The hue, saturation, contrast and brightness distortion function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
results['img'] = results['img'].astype(np.float32)
functions = [
self.transform_brightness, self.transform_contrast,
self.transform_saturation, self.transform_hue
]
distortions = random.permutation(functions)[:self.num_distort_func]
for func in distortions:
results = func(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(hue_cfg={self.hue_cfg}, '
repr_str += f'saturation_cfg={self.saturation_cfg}, '
repr_str += f'contrast_cfg={self.contrast_cfg}, '
repr_str += f'brightness_cfg={self.brightness_cfg}, '
repr_str += f'num_distort_func={self.num_distort_func})'
return repr_str
@TRANSFORMS.register_module()
class PPYOLOERandomCrop(BaseTransform):
"""Random crop the img and bboxes. Different thresholds are used in PPYOLOE
to judge whether the clipped image meets the requirements. This
implementation is different from the implementation of RandomCrop in mmdet.
Required Keys:
- img
- gt_bboxes (BaseBoxes[torch.float32]) (optional)
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_bboxes_labels (optional)
- gt_ignore_flags (optional)
Added Keys:
- pad_param (np.float32)
Args:
aspect_ratio (List[float]): Aspect ratio of cropped region. Default to
[.5, 2].
thresholds (List[float]): Iou thresholds for deciding a valid bbox crop
in [min, max] format. Defaults to [.0, .1, .3, .5, .7, .9].
scaling (List[float]): Ratio between a cropped region and the original
image in [min, max] format. Default to [.3, 1.].
num_attempts (int): Number of tries for each threshold before
giving up. Default to 50.
allow_no_crop (bool): Allow return without actually cropping them.
Default to True.
cover_all_box (bool): Ensure all bboxes are covered in the final crop.
Default to False.
"""
def __init__(self,
aspect_ratio: List[float] = [.5, 2.],
thresholds: List[float] = [.0, .1, .3, .5, .7, .9],
scaling: List[float] = [.3, 1.],
num_attempts: int = 50,
allow_no_crop: bool = True,
cover_all_box: bool = False):
self.aspect_ratio = aspect_ratio
self.thresholds = thresholds
self.scaling = scaling
self.num_attempts = num_attempts
self.allow_no_crop = allow_no_crop
self.cover_all_box = cover_all_box
def _crop_data(self, results: dict, crop_box: Tuple[int, int, int, int],
valid_inds: np.ndarray) -> Union[dict, None]:
"""Function to randomly crop images, bounding boxes, masks, semantic
segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
crop_box (Tuple[int, int, int, int]): Expected absolute coordinates
for cropping, (x1, y1, x2, y2).
valid_inds (np.ndarray): The indexes of gt that needs to be
retained.
Returns:
results (Union[dict, None]): Randomly cropped results, 'img_shape'
key in result dict is updated according to crop size. None will
be returned when there is no valid bbox after cropping.
"""
# crop the image
img = results['img']
crop_x1, crop_y1, crop_x2, crop_y2 = crop_box
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...]
results['img'] = img
img_shape = img.shape
results['img_shape'] = img.shape
# crop bboxes accordingly and clip to the image boundary
if results.get('gt_bboxes', None) is not None:
bboxes = results['gt_bboxes']
bboxes.translate_([-crop_x1, -crop_y1])
bboxes.clip_(img_shape[:2])
results['gt_bboxes'] = bboxes[valid_inds]
if results.get('gt_ignore_flags', None) is not None:
results['gt_ignore_flags'] = \
results['gt_ignore_flags'][valid_inds]
if results.get('gt_bboxes_labels', None) is not None:
results['gt_bboxes_labels'] = \
results['gt_bboxes_labels'][valid_inds]
if results.get('gt_masks', None) is not None:
results['gt_masks'] = results['gt_masks'][
valid_inds.nonzero()[0]].crop(
np.asarray([crop_x1, crop_y1, crop_x2, crop_y2]))
# crop semantic seg
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = results['gt_seg_map'][crop_y1:crop_y2,
crop_x1:crop_x2]
return results
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""The random crop transform function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
if results.get('gt_bboxes', None) is None or len(
results['gt_bboxes']) == 0:
return results
orig_img_h, orig_img_w = results['img'].shape[:2]
gt_bboxes = results['gt_bboxes']
thresholds = list(self.thresholds)
if self.allow_no_crop:
thresholds.append('no_crop')
random.shuffle(thresholds)
for thresh in thresholds:
# Determine the coordinates for cropping
if thresh == 'no_crop':
return results
found = False
for i in range(self.num_attempts):
crop_h, crop_w = self._get_crop_size((orig_img_h, orig_img_w))
if self.aspect_ratio is None:
if crop_h / crop_w < 0.5 or crop_h / crop_w > 2.0:
continue
# get image crop_box
margin_h = max(orig_img_h - crop_h, 0)
margin_w = max(orig_img_w - crop_w, 0)
offset_h, offset_w = self._rand_offset((margin_h, margin_w))
crop_y1, crop_y2 = offset_h, offset_h + crop_h
crop_x1, crop_x2 = offset_w, offset_w + crop_w
crop_box = [crop_x1, crop_y1, crop_x2, crop_y2]
# Calculate the iou between gt_bboxes and crop_boxes
iou = self._iou_matrix(gt_bboxes,
np.array([crop_box], dtype=np.float32))
# If the maximum value of the iou is less than thresh,
# the current crop_box is considered invalid.
if iou.max() < thresh:
continue
# If cover_all_box == True and the minimum value of
# the iou is less than thresh, the current crop_box
# is considered invalid.
if self.cover_all_box and iou.min() < thresh:
continue
# Get which gt_bboxes to keep after cropping.
valid_inds = self._get_valid_inds(
gt_bboxes, np.array(crop_box, dtype=np.float32))
if valid_inds.size > 0:
found = True
break
if found:
results = self._crop_data(results, crop_box, valid_inds)
return results
return results
@cache_randomness
def _rand_offset(self, margin: Tuple[int, int]) -> Tuple[int, int]:
"""Randomly generate crop offset.
Args:
margin (Tuple[int, int]): The upper bound for the offset generated
randomly.
Returns:
Tuple[int, int]: The random offset for the crop.
"""
margin_h, margin_w = margin
offset_h = np.random.randint(0, margin_h + 1)
offset_w = np.random.randint(0, margin_w + 1)
return (offset_h, offset_w)
@cache_randomness
def _get_crop_size(self, image_size: Tuple[int, int]) -> Tuple[int, int]:
"""Randomly generates the crop size based on `image_size`.
Args:
image_size (Tuple[int, int]): (h, w).
Returns:
crop_size (Tuple[int, int]): (crop_h, crop_w) in absolute pixels.
"""
h, w = image_size
scale = random.uniform(*self.scaling)
if self.aspect_ratio is not None:
min_ar, max_ar = self.aspect_ratio
aspect_ratio = random.uniform(
max(min_ar, scale**2), min(max_ar, scale**-2))
h_scale = scale / np.sqrt(aspect_ratio)
w_scale = scale * np.sqrt(aspect_ratio)
else:
h_scale = random.uniform(*self.scaling)
w_scale = random.uniform(*self.scaling)
crop_h = h * h_scale
crop_w = w * w_scale
return int(crop_h), int(crop_w)
def _iou_matrix(self,
gt_bbox: HorizontalBoxes,
crop_bbox: np.ndarray,
eps: float = 1e-10) -> np.ndarray:
"""Calculate iou between gt and image crop box.
Args:
gt_bbox (HorizontalBoxes): Ground truth bounding boxes.
crop_bbox (np.ndarray): Image crop coordinates in
[x1, y1, x2, y2] format.
eps (float): Default to 1e-10.
Return:
(np.ndarray): IoU.
"""
gt_bbox = gt_bbox.tensor.numpy()
lefttop = np.maximum(gt_bbox[:, np.newaxis, :2], crop_bbox[:, :2])
rightbottom = np.minimum(gt_bbox[:, np.newaxis, 2:], crop_bbox[:, 2:])
overlap = np.prod(
rightbottom - lefttop,
axis=2) * (lefttop < rightbottom).all(axis=2)
area_gt_bbox = np.prod(gt_bbox[:, 2:] - crop_bbox[:, :2], axis=1)
area_crop_bbox = np.prod(gt_bbox[:, 2:] - crop_bbox[:, :2], axis=1)
area_o = (area_gt_bbox[:, np.newaxis] + area_crop_bbox - overlap)
return overlap / (area_o + eps)
def _get_valid_inds(self, gt_bbox: HorizontalBoxes,
img_crop_bbox: np.ndarray) -> np.ndarray:
"""Get which Bboxes to keep at the current cropping coordinates.
Args:
gt_bbox (HorizontalBoxes): Ground truth bounding boxes.
img_crop_bbox (np.ndarray): Image crop coordinates in
[x1, y1, x2, y2] format.
Returns:
(np.ndarray): Valid indexes.
"""
cropped_box = gt_bbox.tensor.numpy().copy()
gt_bbox = gt_bbox.tensor.numpy().copy()
cropped_box[:, :2] = np.maximum(gt_bbox[:, :2], img_crop_bbox[:2])
cropped_box[:, 2:] = np.minimum(gt_bbox[:, 2:], img_crop_bbox[2:])
cropped_box[:, :2] -= img_crop_bbox[:2]
cropped_box[:, 2:] -= img_crop_bbox[:2]
centers = (gt_bbox[:, :2] + gt_bbox[:, 2:]) / 2
valid = np.logical_and(img_crop_bbox[:2] <= centers,
centers < img_crop_bbox[2:]).all(axis=1)
valid = np.logical_and(
valid, (cropped_box[:, :2] < cropped_box[:, 2:]).all(axis=1))
return np.where(valid)[0]
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(aspect_ratio={self.aspect_ratio}, '
repr_str += f'thresholds={self.thresholds}, '
repr_str += f'scaling={self.scaling}, '
repr_str += f'num_attempts={self.num_attempts}, '
repr_str += f'allow_no_crop={self.allow_no_crop}, '
repr_str += f'cover_all_box={self.cover_all_box})'
return repr_str
@TRANSFORMS.register_module()
class YOLOv5CopyPaste(BaseTransform):
"""Copy-Paste used in YOLOv5 and YOLOv8.
This transform randomly copy some objects in the image to the mirror
position of the image.It is different from the `CopyPaste` in mmdet.
Required Keys:
- img (np.uint8)
- gt_bboxes (BaseBoxes[torch.float32])
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (bool) (optional)
- gt_masks (PolygonMasks) (optional)
Modified Keys:
- img
- gt_bboxes
- gt_bboxes_labels (np.int64) (optional)
- gt_ignore_flags (optional)
- gt_masks (optional)
Args:
ioa_thresh (float): Ioa thresholds for deciding valid bbox.
prob (float): Probability of choosing objects.
Defaults to 0.5.
"""
def __init__(self, ioa_thresh: float = 0.3, prob: float = 0.5):
self.ioa_thresh = ioa_thresh
self.prob = prob
@autocast_box_type()
def transform(self, results: dict) -> Union[dict, None]:
"""The YOLOv5 and YOLOv8 Copy-Paste transform function.
Args:
results (dict): The result dict.
Returns:
dict: The result dict.
"""
if len(results.get('gt_masks', [])) == 0:
return results
gt_masks = results['gt_masks']
assert isinstance(gt_masks, PolygonMasks),\
'only support type of PolygonMasks,' \
' but get type: %s' % type(gt_masks)
gt_bboxes = results['gt_bboxes']
gt_bboxes_labels = results.get('gt_bboxes_labels', None)
img = results['img']
img_h, img_w = img.shape[:2]
# calculate ioa
gt_bboxes_flip = deepcopy(gt_bboxes)
gt_bboxes_flip.flip_(img.shape)
ioa = self.bbox_ioa(gt_bboxes_flip, gt_bboxes)
indexes = torch.nonzero((ioa < self.ioa_thresh).all(1))[:, 0]
n = len(indexes)
valid_inds = random.choice(
indexes, size=round(self.prob * n), replace=False)
if len(valid_inds) == 0:
return results
if gt_bboxes_labels is not None:
# prepare labels
gt_bboxes_labels = np.concatenate(
(gt_bboxes_labels, gt_bboxes_labels[valid_inds]), axis=0)
# prepare bboxes
copypaste_bboxes = gt_bboxes_flip[valid_inds]
gt_bboxes = gt_bboxes.cat([gt_bboxes, copypaste_bboxes])
# prepare images
copypaste_gt_masks = gt_masks[valid_inds]
copypaste_gt_masks_flip = copypaste_gt_masks.flip()
# convert poly format to bitmap format
# example: poly: [[array(0.0, 0.0, 10.0, 0.0, 10.0, 10.0, 0.0, 10.0]]
# -> bitmap: a mask with shape equal to (1, img_h, img_w)
# # type1 low speed
# copypaste_gt_masks_bitmap = copypaste_gt_masks.to_ndarray()
# copypaste_mask = np.sum(copypaste_gt_masks_bitmap, axis=0) > 0
# type2
copypaste_mask = np.zeros((img_h, img_w), dtype=np.uint8)
for poly in copypaste_gt_masks.masks:
poly = [i.reshape((-1, 1, 2)).astype(np.int32) for i in poly]
cv2.drawContours(copypaste_mask, poly, -1, (1, ), cv2.FILLED)
copypaste_mask = copypaste_mask.astype(bool)
# copy objects, and paste to the mirror position of the image
copypaste_mask_flip = mmcv.imflip(
copypaste_mask, direction='horizontal')
copypaste_img = mmcv.imflip(img, direction='horizontal')
img[copypaste_mask_flip] = copypaste_img[copypaste_mask_flip]
# prepare masks
gt_masks = copypaste_gt_masks.cat([gt_masks, copypaste_gt_masks_flip])
if 'gt_ignore_flags' in results:
# prepare gt_ignore_flags
gt_ignore_flags = results['gt_ignore_flags']
gt_ignore_flags = np.concatenate(
[gt_ignore_flags, gt_ignore_flags[valid_inds]], axis=0)
results['gt_ignore_flags'] = gt_ignore_flags
results['img'] = img
results['gt_bboxes'] = gt_bboxes
if gt_bboxes_labels is not None:
results['gt_bboxes_labels'] = gt_bboxes_labels
results['gt_masks'] = gt_masks
return results
@staticmethod
def bbox_ioa(gt_bboxes_flip: HorizontalBoxes,
gt_bboxes: HorizontalBoxes,
eps: float = 1e-7) -> np.ndarray:
"""Calculate ioa between gt_bboxes_flip and gt_bboxes.
Args:
gt_bboxes_flip (HorizontalBoxes): Flipped ground truth
bounding boxes.
gt_bboxes (HorizontalBoxes): Ground truth bounding boxes.
eps (float): Default to 1e-10.
Return:
(Tensor): Ioa.
"""
gt_bboxes_flip = gt_bboxes_flip.tensor
gt_bboxes = gt_bboxes.tensor
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = gt_bboxes_flip.T
b2_x1, b2_y1, b2_x2, b2_y2 = gt_bboxes.T
# Intersection area
inter_area = (torch.minimum(b1_x2[:, None],
b2_x2) - torch.maximum(b1_x1[:, None],
b2_x1)).clip(0) * \
(torch.minimum(b1_y2[:, None],
b2_y2) - torch.maximum(b1_y1[:, None],
b2_y1)).clip(0)
# box2 area
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
# Intersection over box2 area
return inter_area / box2_area
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(ioa_thresh={self.ioa_thresh},'
repr_str += f'prob={self.prob})'
return repr_str
@TRANSFORMS.register_module()
class RemoveDataElement(BaseTransform):
"""Remove unnecessary data element in results.
Args:
keys (Union[str, Sequence[str]]): Keys need to be removed.
"""
def __init__(self, keys: Union[str, Sequence[str]]):
self.keys = [keys] if isinstance(keys, str) else keys
def transform(self, results: dict) -> dict:
for key in self.keys:
results.pop(key, None)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(keys={self.keys})'
return repr_str
@TRANSFORMS.register_module()
class RegularizeRotatedBox(BaseTransform):
"""Regularize rotated boxes.
Due to the angle periodicity, one rotated box can be represented in
many different (x, y, w, h, t). To make each rotated box unique,
``regularize_boxes`` will take the remainder of the angle divided by
180 degrees.
For convenience, three angle_version can be used here:
- 'oc': OpenCV Definition. Has the same box representation as
``cv2.minAreaRect`` the angle ranges in [-90, 0).
- 'le90': Long Edge Definition (90). the angle ranges in [-90, 90).
The width is always longer than the height.
- 'le135': Long Edge Definition (135). the angle ranges in [-45, 135).
The width is always longer than the height.
Required Keys:
- gt_bboxes (RotatedBoxes[torch.float32])
Modified Keys:
- gt_bboxes
Args:
angle_version (str): Angle version. Can only be 'oc',
'le90', or 'le135'. Defaults to 'le90.
"""
def __init__(self, angle_version='le90') -> None:
self.angle_version = angle_version
try:
from mmrotate.structures.bbox import RotatedBoxes
self.box_type = RotatedBoxes
except ImportError:
raise ImportError(
'Please run "mim install -r requirements/mmrotate.txt" '
'to install mmrotate first for rotated detection.')
def transform(self, results: dict) -> dict:
assert isinstance(results['gt_bboxes'], self.box_type)
results['gt_bboxes'] = self.box_type(
results['gt_bboxes'].regularize_boxes(self.angle_version))
return results