Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
from typing import List, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule | |
from mmdet.models.backbones.csp_darknet import CSPLayer, Focus | |
from mmdet.utils import ConfigType, OptMultiConfig | |
from mmyolo.registry import MODELS | |
from ..layers import CSPLayerWithTwoConv, SPPFBottleneck | |
from ..utils import make_divisible, make_round | |
from .base_backbone import BaseBackbone | |
class YOLOv5CSPDarknet(BaseBackbone): | |
"""CSP-Darknet backbone used in YOLOv5. | |
Args: | |
arch (str): Architecture of CSP-Darknet, from {P5, P6}. | |
Defaults to P5. | |
plugins (list[dict]): List of plugins for stages, each dict contains: | |
- cfg (dict, required): Cfg dict to build plugin. | |
- stages (tuple[bool], optional): Stages to apply plugin, length | |
should be same as 'num_stages'. | |
deepen_factor (float): Depth multiplier, multiply number of | |
blocks in CSP layer by this amount. Defaults to 1.0. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Defaults to 1.0. | |
input_channels (int): Number of input image channels. Defaults to: 3. | |
out_indices (Tuple[int]): Output from which stages. | |
Defaults to (2, 3, 4). | |
frozen_stages (int): Stages to be frozen (stop grad and set eval | |
mode). -1 means not freezing any parameters. Defaults to -1. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
Defaults to dict(type='BN', requires_grad=True). | |
act_cfg (dict): Config dict for activation layer. | |
Defaults to dict(type='SiLU', inplace=True). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Defaults to False. | |
init_cfg (Union[dict,list[dict]], optional): Initialization config | |
dict. Defaults to None. | |
Example: | |
>>> from mmyolo.models import YOLOv5CSPDarknet | |
>>> import torch | |
>>> model = YOLOv5CSPDarknet() | |
>>> model.eval() | |
>>> inputs = torch.rand(1, 3, 416, 416) | |
>>> level_outputs = model(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
... | |
(1, 256, 52, 52) | |
(1, 512, 26, 26) | |
(1, 1024, 13, 13) | |
""" | |
# From left to right: | |
# in_channels, out_channels, num_blocks, add_identity, use_spp | |
arch_settings = { | |
'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False], | |
[256, 512, 9, True, False], [512, 1024, 3, True, True]], | |
'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False], | |
[256, 512, 9, True, False], [512, 768, 3, True, False], | |
[768, 1024, 3, True, True]] | |
} | |
def __init__(self, | |
arch: str = 'P5', | |
plugins: Union[dict, List[dict]] = None, | |
deepen_factor: float = 1.0, | |
widen_factor: float = 1.0, | |
input_channels: int = 3, | |
out_indices: Tuple[int] = (2, 3, 4), | |
frozen_stages: int = -1, | |
norm_cfg: ConfigType = dict( | |
type='BN', momentum=0.03, eps=0.001), | |
act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
norm_eval: bool = False, | |
init_cfg: OptMultiConfig = None): | |
super().__init__( | |
self.arch_settings[arch], | |
deepen_factor, | |
widen_factor, | |
input_channels=input_channels, | |
out_indices=out_indices, | |
plugins=plugins, | |
frozen_stages=frozen_stages, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
norm_eval=norm_eval, | |
init_cfg=init_cfg) | |
def build_stem_layer(self) -> nn.Module: | |
"""Build a stem layer.""" | |
return ConvModule( | |
self.input_channels, | |
make_divisible(self.arch_setting[0][0], self.widen_factor), | |
kernel_size=6, | |
stride=2, | |
padding=2, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
def build_stage_layer(self, stage_idx: int, setting: list) -> list: | |
"""Build a stage layer. | |
Args: | |
stage_idx (int): The index of a stage layer. | |
setting (list): The architecture setting of a stage layer. | |
""" | |
in_channels, out_channels, num_blocks, add_identity, use_spp = setting | |
in_channels = make_divisible(in_channels, self.widen_factor) | |
out_channels = make_divisible(out_channels, self.widen_factor) | |
num_blocks = make_round(num_blocks, self.deepen_factor) | |
stage = [] | |
conv_layer = ConvModule( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(conv_layer) | |
csp_layer = CSPLayer( | |
out_channels, | |
out_channels, | |
num_blocks=num_blocks, | |
add_identity=add_identity, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(csp_layer) | |
if use_spp: | |
spp = SPPFBottleneck( | |
out_channels, | |
out_channels, | |
kernel_sizes=5, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(spp) | |
return stage | |
def init_weights(self): | |
"""Initialize the parameters.""" | |
if self.init_cfg is None: | |
for m in self.modules(): | |
if isinstance(m, torch.nn.Conv2d): | |
# In order to be consistent with the source code, | |
# reset the Conv2d initialization parameters | |
m.reset_parameters() | |
else: | |
super().init_weights() | |
class YOLOv8CSPDarknet(BaseBackbone): | |
"""CSP-Darknet backbone used in YOLOv8. | |
Args: | |
arch (str): Architecture of CSP-Darknet, from {P5}. | |
Defaults to P5. | |
last_stage_out_channels (int): Final layer output channel. | |
Defaults to 1024. | |
plugins (list[dict]): List of plugins for stages, each dict contains: | |
- cfg (dict, required): Cfg dict to build plugin. | |
- stages (tuple[bool], optional): Stages to apply plugin, length | |
should be same as 'num_stages'. | |
deepen_factor (float): Depth multiplier, multiply number of | |
blocks in CSP layer by this amount. Defaults to 1.0. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Defaults to 1.0. | |
input_channels (int): Number of input image channels. Defaults to: 3. | |
out_indices (Tuple[int]): Output from which stages. | |
Defaults to (2, 3, 4). | |
frozen_stages (int): Stages to be frozen (stop grad and set eval | |
mode). -1 means not freezing any parameters. Defaults to -1. | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
Defaults to dict(type='BN', requires_grad=True). | |
act_cfg (dict): Config dict for activation layer. | |
Defaults to dict(type='SiLU', inplace=True). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. Defaults to False. | |
init_cfg (Union[dict,list[dict]], optional): Initialization config | |
dict. Defaults to None. | |
Example: | |
>>> from mmyolo.models import YOLOv8CSPDarknet | |
>>> import torch | |
>>> model = YOLOv8CSPDarknet() | |
>>> model.eval() | |
>>> inputs = torch.rand(1, 3, 416, 416) | |
>>> level_outputs = model(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
... | |
(1, 256, 52, 52) | |
(1, 512, 26, 26) | |
(1, 1024, 13, 13) | |
""" | |
# From left to right: | |
# in_channels, out_channels, num_blocks, add_identity, use_spp | |
# the final out_channels will be set according to the param. | |
arch_settings = { | |
'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False], | |
[256, 512, 6, True, False], [512, None, 3, True, True]], | |
} | |
def __init__(self, | |
arch: str = 'P5', | |
last_stage_out_channels: int = 1024, | |
plugins: Union[dict, List[dict]] = None, | |
deepen_factor: float = 1.0, | |
widen_factor: float = 1.0, | |
input_channels: int = 3, | |
out_indices: Tuple[int] = (2, 3, 4), | |
frozen_stages: int = -1, | |
norm_cfg: ConfigType = dict( | |
type='BN', momentum=0.03, eps=0.001), | |
act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
norm_eval: bool = False, | |
init_cfg: OptMultiConfig = None): | |
self.arch_settings[arch][-1][1] = last_stage_out_channels | |
super().__init__( | |
self.arch_settings[arch], | |
deepen_factor, | |
widen_factor, | |
input_channels=input_channels, | |
out_indices=out_indices, | |
plugins=plugins, | |
frozen_stages=frozen_stages, | |
norm_cfg=norm_cfg, | |
act_cfg=act_cfg, | |
norm_eval=norm_eval, | |
init_cfg=init_cfg) | |
def build_stem_layer(self) -> nn.Module: | |
"""Build a stem layer.""" | |
return ConvModule( | |
self.input_channels, | |
make_divisible(self.arch_setting[0][0], self.widen_factor), | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
def build_stage_layer(self, stage_idx: int, setting: list) -> list: | |
"""Build a stage layer. | |
Args: | |
stage_idx (int): The index of a stage layer. | |
setting (list): The architecture setting of a stage layer. | |
""" | |
in_channels, out_channels, num_blocks, add_identity, use_spp = setting | |
in_channels = make_divisible(in_channels, self.widen_factor) | |
out_channels = make_divisible(out_channels, self.widen_factor) | |
num_blocks = make_round(num_blocks, self.deepen_factor) | |
stage = [] | |
conv_layer = ConvModule( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(conv_layer) | |
csp_layer = CSPLayerWithTwoConv( | |
out_channels, | |
out_channels, | |
num_blocks=num_blocks, | |
add_identity=add_identity, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(csp_layer) | |
if use_spp: | |
spp = SPPFBottleneck( | |
out_channels, | |
out_channels, | |
kernel_sizes=5, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(spp) | |
return stage | |
def init_weights(self): | |
"""Initialize the parameters.""" | |
if self.init_cfg is None: | |
for m in self.modules(): | |
if isinstance(m, torch.nn.Conv2d): | |
# In order to be consistent with the source code, | |
# reset the Conv2d initialization parameters | |
m.reset_parameters() | |
else: | |
super().init_weights() | |
class YOLOXCSPDarknet(BaseBackbone): | |
"""CSP-Darknet backbone used in YOLOX. | |
Args: | |
arch (str): Architecture of CSP-Darknet, from {P5, P6}. | |
Defaults to P5. | |
plugins (list[dict]): List of plugins for stages, each dict contains: | |
- cfg (dict, required): Cfg dict to build plugin. | |
- stages (tuple[bool], optional): Stages to apply plugin, length | |
should be same as 'num_stages'. | |
deepen_factor (float): Depth multiplier, multiply number of | |
blocks in CSP layer by this amount. Defaults to 1.0. | |
widen_factor (float): Width multiplier, multiply number of | |
channels in each layer by this amount. Defaults to 1.0. | |
input_channels (int): Number of input image channels. Defaults to 3. | |
out_indices (Tuple[int]): Output from which stages. | |
Defaults to (2, 3, 4). | |
frozen_stages (int): Stages to be frozen (stop grad and set eval | |
mode). -1 means not freezing any parameters. Defaults to -1. | |
use_depthwise (bool): Whether to use depthwise separable convolution. | |
Defaults to False. | |
spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP | |
layers. Defaults to (5, 9, 13). | |
norm_cfg (dict): Dictionary to construct and config norm layer. | |
Defaults to dict(type='BN', momentum=0.03, eps=0.001). | |
act_cfg (dict): Config dict for activation layer. | |
Defaults to dict(type='SiLU', inplace=True). | |
norm_eval (bool): Whether to set norm layers to eval mode, namely, | |
freeze running stats (mean and var). Note: Effect on Batch Norm | |
and its variants only. | |
init_cfg (Union[dict,list[dict]], optional): Initialization config | |
dict. Defaults to None. | |
Example: | |
>>> from mmyolo.models import YOLOXCSPDarknet | |
>>> import torch | |
>>> model = YOLOXCSPDarknet() | |
>>> model.eval() | |
>>> inputs = torch.rand(1, 3, 416, 416) | |
>>> level_outputs = model(inputs) | |
>>> for level_out in level_outputs: | |
... print(tuple(level_out.shape)) | |
... | |
(1, 256, 52, 52) | |
(1, 512, 26, 26) | |
(1, 1024, 13, 13) | |
""" | |
# From left to right: | |
# in_channels, out_channels, num_blocks, add_identity, use_spp | |
arch_settings = { | |
'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False], | |
[256, 512, 9, True, False], [512, 1024, 3, False, True]], | |
} | |
def __init__(self, | |
arch: str = 'P5', | |
plugins: Union[dict, List[dict]] = None, | |
deepen_factor: float = 1.0, | |
widen_factor: float = 1.0, | |
input_channels: int = 3, | |
out_indices: Tuple[int] = (2, 3, 4), | |
frozen_stages: int = -1, | |
use_depthwise: bool = False, | |
spp_kernal_sizes: Tuple[int] = (5, 9, 13), | |
norm_cfg: ConfigType = dict( | |
type='BN', momentum=0.03, eps=0.001), | |
act_cfg: ConfigType = dict(type='SiLU', inplace=True), | |
norm_eval: bool = False, | |
init_cfg: OptMultiConfig = None): | |
self.use_depthwise = use_depthwise | |
self.spp_kernal_sizes = spp_kernal_sizes | |
super().__init__(self.arch_settings[arch], deepen_factor, widen_factor, | |
input_channels, out_indices, frozen_stages, plugins, | |
norm_cfg, act_cfg, norm_eval, init_cfg) | |
def build_stem_layer(self) -> nn.Module: | |
"""Build a stem layer.""" | |
return Focus( | |
3, | |
make_divisible(64, self.widen_factor), | |
kernel_size=3, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
def build_stage_layer(self, stage_idx: int, setting: list) -> list: | |
"""Build a stage layer. | |
Args: | |
stage_idx (int): The index of a stage layer. | |
setting (list): The architecture setting of a stage layer. | |
""" | |
in_channels, out_channels, num_blocks, add_identity, use_spp = setting | |
in_channels = make_divisible(in_channels, self.widen_factor) | |
out_channels = make_divisible(out_channels, self.widen_factor) | |
num_blocks = make_round(num_blocks, self.deepen_factor) | |
stage = [] | |
conv = DepthwiseSeparableConvModule \ | |
if self.use_depthwise else ConvModule | |
conv_layer = conv( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=2, | |
padding=1, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(conv_layer) | |
if use_spp: | |
spp = SPPFBottleneck( | |
out_channels, | |
out_channels, | |
kernel_sizes=self.spp_kernal_sizes, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(spp) | |
csp_layer = CSPLayer( | |
out_channels, | |
out_channels, | |
num_blocks=num_blocks, | |
add_identity=add_identity, | |
norm_cfg=self.norm_cfg, | |
act_cfg=self.act_cfg) | |
stage.append(csp_layer) | |
return stage | |