KyanChen's picture
Upload 89 files
3094730
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
from mmdet.models.backbones.csp_darknet import CSPLayer, Focus
from mmdet.utils import ConfigType, OptMultiConfig
from mmyolo.registry import MODELS
from ..layers import CSPLayerWithTwoConv, SPPFBottleneck
from ..utils import make_divisible, make_round
from .base_backbone import BaseBackbone
@MODELS.register_module()
class YOLOv5CSPDarknet(BaseBackbone):
"""CSP-Darknet backbone used in YOLOv5.
Args:
arch (str): Architecture of CSP-Darknet, from {P5, P6}.
Defaults to P5.
plugins (list[dict]): List of plugins for stages, each dict contains:
- cfg (dict, required): Cfg dict to build plugin.
- stages (tuple[bool], optional): Stages to apply plugin, length
should be same as 'num_stages'.
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
input_channels (int): Number of input image channels. Defaults to: 3.
out_indices (Tuple[int]): Output from which stages.
Defaults to (2, 3, 4).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Defaults to -1.
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='SiLU', inplace=True).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
init_cfg (Union[dict,list[dict]], optional): Initialization config
dict. Defaults to None.
Example:
>>> from mmyolo.models import YOLOv5CSPDarknet
>>> import torch
>>> model = YOLOv5CSPDarknet()
>>> model.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
# From left to right:
# in_channels, out_channels, num_blocks, add_identity, use_spp
arch_settings = {
'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False],
[256, 512, 9, True, False], [512, 1024, 3, True, True]],
'P6': [[64, 128, 3, True, False], [128, 256, 6, True, False],
[256, 512, 9, True, False], [512, 768, 3, True, False],
[768, 1024, 3, True, True]]
}
def __init__(self,
arch: str = 'P5',
plugins: Union[dict, List[dict]] = None,
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
input_channels: int = 3,
out_indices: Tuple[int] = (2, 3, 4),
frozen_stages: int = -1,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
norm_eval: bool = False,
init_cfg: OptMultiConfig = None):
super().__init__(
self.arch_settings[arch],
deepen_factor,
widen_factor,
input_channels=input_channels,
out_indices=out_indices,
plugins=plugins,
frozen_stages=frozen_stages,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
norm_eval=norm_eval,
init_cfg=init_cfg)
def build_stem_layer(self) -> nn.Module:
"""Build a stem layer."""
return ConvModule(
self.input_channels,
make_divisible(self.arch_setting[0][0], self.widen_factor),
kernel_size=6,
stride=2,
padding=2,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def build_stage_layer(self, stage_idx: int, setting: list) -> list:
"""Build a stage layer.
Args:
stage_idx (int): The index of a stage layer.
setting (list): The architecture setting of a stage layer.
"""
in_channels, out_channels, num_blocks, add_identity, use_spp = setting
in_channels = make_divisible(in_channels, self.widen_factor)
out_channels = make_divisible(out_channels, self.widen_factor)
num_blocks = make_round(num_blocks, self.deepen_factor)
stage = []
conv_layer = ConvModule(
in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(conv_layer)
csp_layer = CSPLayer(
out_channels,
out_channels,
num_blocks=num_blocks,
add_identity=add_identity,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(csp_layer)
if use_spp:
spp = SPPFBottleneck(
out_channels,
out_channels,
kernel_sizes=5,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(spp)
return stage
def init_weights(self):
"""Initialize the parameters."""
if self.init_cfg is None:
for m in self.modules():
if isinstance(m, torch.nn.Conv2d):
# In order to be consistent with the source code,
# reset the Conv2d initialization parameters
m.reset_parameters()
else:
super().init_weights()
@MODELS.register_module()
class YOLOv8CSPDarknet(BaseBackbone):
"""CSP-Darknet backbone used in YOLOv8.
Args:
arch (str): Architecture of CSP-Darknet, from {P5}.
Defaults to P5.
last_stage_out_channels (int): Final layer output channel.
Defaults to 1024.
plugins (list[dict]): List of plugins for stages, each dict contains:
- cfg (dict, required): Cfg dict to build plugin.
- stages (tuple[bool], optional): Stages to apply plugin, length
should be same as 'num_stages'.
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
input_channels (int): Number of input image channels. Defaults to: 3.
out_indices (Tuple[int]): Output from which stages.
Defaults to (2, 3, 4).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Defaults to -1.
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to dict(type='BN', requires_grad=True).
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='SiLU', inplace=True).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Defaults to False.
init_cfg (Union[dict,list[dict]], optional): Initialization config
dict. Defaults to None.
Example:
>>> from mmyolo.models import YOLOv8CSPDarknet
>>> import torch
>>> model = YOLOv8CSPDarknet()
>>> model.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
# From left to right:
# in_channels, out_channels, num_blocks, add_identity, use_spp
# the final out_channels will be set according to the param.
arch_settings = {
'P5': [[64, 128, 3, True, False], [128, 256, 6, True, False],
[256, 512, 6, True, False], [512, None, 3, True, True]],
}
def __init__(self,
arch: str = 'P5',
last_stage_out_channels: int = 1024,
plugins: Union[dict, List[dict]] = None,
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
input_channels: int = 3,
out_indices: Tuple[int] = (2, 3, 4),
frozen_stages: int = -1,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
norm_eval: bool = False,
init_cfg: OptMultiConfig = None):
self.arch_settings[arch][-1][1] = last_stage_out_channels
super().__init__(
self.arch_settings[arch],
deepen_factor,
widen_factor,
input_channels=input_channels,
out_indices=out_indices,
plugins=plugins,
frozen_stages=frozen_stages,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
norm_eval=norm_eval,
init_cfg=init_cfg)
def build_stem_layer(self) -> nn.Module:
"""Build a stem layer."""
return ConvModule(
self.input_channels,
make_divisible(self.arch_setting[0][0], self.widen_factor),
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def build_stage_layer(self, stage_idx: int, setting: list) -> list:
"""Build a stage layer.
Args:
stage_idx (int): The index of a stage layer.
setting (list): The architecture setting of a stage layer.
"""
in_channels, out_channels, num_blocks, add_identity, use_spp = setting
in_channels = make_divisible(in_channels, self.widen_factor)
out_channels = make_divisible(out_channels, self.widen_factor)
num_blocks = make_round(num_blocks, self.deepen_factor)
stage = []
conv_layer = ConvModule(
in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(conv_layer)
csp_layer = CSPLayerWithTwoConv(
out_channels,
out_channels,
num_blocks=num_blocks,
add_identity=add_identity,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(csp_layer)
if use_spp:
spp = SPPFBottleneck(
out_channels,
out_channels,
kernel_sizes=5,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(spp)
return stage
def init_weights(self):
"""Initialize the parameters."""
if self.init_cfg is None:
for m in self.modules():
if isinstance(m, torch.nn.Conv2d):
# In order to be consistent with the source code,
# reset the Conv2d initialization parameters
m.reset_parameters()
else:
super().init_weights()
@MODELS.register_module()
class YOLOXCSPDarknet(BaseBackbone):
"""CSP-Darknet backbone used in YOLOX.
Args:
arch (str): Architecture of CSP-Darknet, from {P5, P6}.
Defaults to P5.
plugins (list[dict]): List of plugins for stages, each dict contains:
- cfg (dict, required): Cfg dict to build plugin.
- stages (tuple[bool], optional): Stages to apply plugin, length
should be same as 'num_stages'.
deepen_factor (float): Depth multiplier, multiply number of
blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float): Width multiplier, multiply number of
channels in each layer by this amount. Defaults to 1.0.
input_channels (int): Number of input image channels. Defaults to 3.
out_indices (Tuple[int]): Output from which stages.
Defaults to (2, 3, 4).
frozen_stages (int): Stages to be frozen (stop grad and set eval
mode). -1 means not freezing any parameters. Defaults to -1.
use_depthwise (bool): Whether to use depthwise separable convolution.
Defaults to False.
spp_kernal_sizes: (tuple[int]): Sequential of kernel sizes of SPP
layers. Defaults to (5, 9, 13).
norm_cfg (dict): Dictionary to construct and config norm layer.
Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (dict): Config dict for activation layer.
Defaults to dict(type='SiLU', inplace=True).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
init_cfg (Union[dict,list[dict]], optional): Initialization config
dict. Defaults to None.
Example:
>>> from mmyolo.models import YOLOXCSPDarknet
>>> import torch
>>> model = YOLOXCSPDarknet()
>>> model.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
# From left to right:
# in_channels, out_channels, num_blocks, add_identity, use_spp
arch_settings = {
'P5': [[64, 128, 3, True, False], [128, 256, 9, True, False],
[256, 512, 9, True, False], [512, 1024, 3, False, True]],
}
def __init__(self,
arch: str = 'P5',
plugins: Union[dict, List[dict]] = None,
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
input_channels: int = 3,
out_indices: Tuple[int] = (2, 3, 4),
frozen_stages: int = -1,
use_depthwise: bool = False,
spp_kernal_sizes: Tuple[int] = (5, 9, 13),
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
norm_eval: bool = False,
init_cfg: OptMultiConfig = None):
self.use_depthwise = use_depthwise
self.spp_kernal_sizes = spp_kernal_sizes
super().__init__(self.arch_settings[arch], deepen_factor, widen_factor,
input_channels, out_indices, frozen_stages, plugins,
norm_cfg, act_cfg, norm_eval, init_cfg)
def build_stem_layer(self) -> nn.Module:
"""Build a stem layer."""
return Focus(
3,
make_divisible(64, self.widen_factor),
kernel_size=3,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
def build_stage_layer(self, stage_idx: int, setting: list) -> list:
"""Build a stage layer.
Args:
stage_idx (int): The index of a stage layer.
setting (list): The architecture setting of a stage layer.
"""
in_channels, out_channels, num_blocks, add_identity, use_spp = setting
in_channels = make_divisible(in_channels, self.widen_factor)
out_channels = make_divisible(out_channels, self.widen_factor)
num_blocks = make_round(num_blocks, self.deepen_factor)
stage = []
conv = DepthwiseSeparableConvModule \
if self.use_depthwise else ConvModule
conv_layer = conv(
in_channels,
out_channels,
kernel_size=3,
stride=2,
padding=1,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(conv_layer)
if use_spp:
spp = SPPFBottleneck(
out_channels,
out_channels,
kernel_sizes=self.spp_kernal_sizes,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(spp)
csp_layer = CSPLayer(
out_channels,
out_channels,
num_blocks=num_blocks,
add_identity=add_identity,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg)
stage.append(csp_layer)
return stage