Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import warnings | |
from typing import Optional, Sequence, Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
from mmcv.cnn import (Linear, build_activation_layer, build_conv_layer, | |
build_norm_layer) | |
from mmcv.cnn.bricks.drop import Dropout | |
from mmengine.model import BaseModule, ModuleList | |
from mmengine.utils import to_2tuple | |
from torch import Tensor, nn | |
from mmdet.registry import MODELS | |
from mmdet.utils import OptConfigType, OptMultiConfig | |
def nlc_to_nchw(x: Tensor, hw_shape: Sequence[int]) -> Tensor: | |
"""Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor. | |
Args: | |
x (Tensor): The input tensor of shape [N, L, C] before conversion. | |
hw_shape (Sequence[int]): The height and width of output feature map. | |
Returns: | |
Tensor: The output tensor of shape [N, C, H, W] after conversion. | |
""" | |
H, W = hw_shape | |
assert len(x.shape) == 3 | |
B, L, C = x.shape | |
assert L == H * W, 'The seq_len does not match H, W' | |
return x.transpose(1, 2).reshape(B, C, H, W).contiguous() | |
def nchw_to_nlc(x): | |
"""Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor. | |
Args: | |
x (Tensor): The input tensor of shape [N, C, H, W] before conversion. | |
Returns: | |
Tensor: The output tensor of shape [N, L, C] after conversion. | |
""" | |
assert len(x.shape) == 4 | |
return x.flatten(2).transpose(1, 2).contiguous() | |
def coordinate_to_encoding(coord_tensor: Tensor, | |
num_feats: int = 128, | |
temperature: int = 10000, | |
scale: float = 2 * math.pi): | |
"""Convert coordinate tensor to positional encoding. | |
Args: | |
coord_tensor (Tensor): Coordinate tensor to be converted to | |
positional encoding. With the last dimension as 2 or 4. | |
num_feats (int, optional): The feature dimension for each position | |
along x-axis or y-axis. Note the final returned dimension | |
for each position is 2 times of this value. Defaults to 128. | |
temperature (int, optional): The temperature used for scaling | |
the position embedding. Defaults to 10000. | |
scale (float, optional): A scale factor that scales the position | |
embedding. The scale will be used only when `normalize` is True. | |
Defaults to 2*pi. | |
Returns: | |
Tensor: Returned encoded positional tensor. | |
""" | |
dim_t = torch.arange( | |
num_feats, dtype=torch.float32, device=coord_tensor.device) | |
dim_t = temperature**(2 * (dim_t // 2) / num_feats) | |
x_embed = coord_tensor[..., 0] * scale | |
y_embed = coord_tensor[..., 1] * scale | |
pos_x = x_embed[..., None] / dim_t | |
pos_y = y_embed[..., None] / dim_t | |
pos_x = torch.stack((pos_x[..., 0::2].sin(), pos_x[..., 1::2].cos()), | |
dim=-1).flatten(2) | |
pos_y = torch.stack((pos_y[..., 0::2].sin(), pos_y[..., 1::2].cos()), | |
dim=-1).flatten(2) | |
if coord_tensor.size(-1) == 2: | |
pos = torch.cat((pos_y, pos_x), dim=-1) | |
elif coord_tensor.size(-1) == 4: | |
w_embed = coord_tensor[..., 2] * scale | |
pos_w = w_embed[..., None] / dim_t | |
pos_w = torch.stack((pos_w[..., 0::2].sin(), pos_w[..., 1::2].cos()), | |
dim=-1).flatten(2) | |
h_embed = coord_tensor[..., 3] * scale | |
pos_h = h_embed[..., None] / dim_t | |
pos_h = torch.stack((pos_h[..., 0::2].sin(), pos_h[..., 1::2].cos()), | |
dim=-1).flatten(2) | |
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=-1) | |
else: | |
raise ValueError('Unknown pos_tensor shape(-1):{}'.format( | |
coord_tensor.size(-1))) | |
return pos | |
def inverse_sigmoid(x: Tensor, eps: float = 1e-5) -> Tensor: | |
"""Inverse function of sigmoid. | |
Args: | |
x (Tensor): The tensor to do the inverse. | |
eps (float): EPS avoid numerical overflow. Defaults 1e-5. | |
Returns: | |
Tensor: The x has passed the inverse function of sigmoid, has the same | |
shape with input. | |
""" | |
x = x.clamp(min=0, max=1) | |
x1 = x.clamp(min=eps) | |
x2 = (1 - x).clamp(min=eps) | |
return torch.log(x1 / x2) | |
class AdaptivePadding(nn.Module): | |
"""Applies padding to input (if needed) so that input can get fully covered | |
by filter you specified. It support two modes "same" and "corner". The | |
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around | |
input. The "corner" mode would pad zero to bottom right. | |
Args: | |
kernel_size (int | tuple): Size of the kernel: | |
stride (int | tuple): Stride of the filter. Default: 1: | |
dilation (int | tuple): Spacing between kernel elements. | |
Default: 1 | |
padding (str): Support "same" and "corner", "corner" mode | |
would pad zero to bottom right, and "same" mode would | |
pad zero around input. Default: "corner". | |
Example: | |
>>> kernel_size = 16 | |
>>> stride = 16 | |
>>> dilation = 1 | |
>>> input = torch.rand(1, 1, 15, 17) | |
>>> adap_pad = AdaptivePadding( | |
>>> kernel_size=kernel_size, | |
>>> stride=stride, | |
>>> dilation=dilation, | |
>>> padding="corner") | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
>>> input = torch.rand(1, 1, 16, 17) | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
""" | |
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): | |
super(AdaptivePadding, self).__init__() | |
assert padding in ('same', 'corner') | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
padding = to_2tuple(padding) | |
dilation = to_2tuple(dilation) | |
self.padding = padding | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.dilation = dilation | |
def get_pad_shape(self, input_shape): | |
input_h, input_w = input_shape | |
kernel_h, kernel_w = self.kernel_size | |
stride_h, stride_w = self.stride | |
output_h = math.ceil(input_h / stride_h) | |
output_w = math.ceil(input_w / stride_w) | |
pad_h = max((output_h - 1) * stride_h + | |
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) | |
pad_w = max((output_w - 1) * stride_w + | |
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) | |
return pad_h, pad_w | |
def forward(self, x): | |
pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) | |
if pad_h > 0 or pad_w > 0: | |
if self.padding == 'corner': | |
x = F.pad(x, [0, pad_w, 0, pad_h]) | |
elif self.padding == 'same': | |
x = F.pad(x, [ | |
pad_w // 2, pad_w - pad_w // 2, pad_h // 2, | |
pad_h - pad_h // 2 | |
]) | |
return x | |
class PatchEmbed(BaseModule): | |
"""Image to Patch Embedding. | |
We use a conv layer to implement PatchEmbed. | |
Args: | |
in_channels (int): The num of input channels. Default: 3 | |
embed_dims (int): The dimensions of embedding. Default: 768 | |
conv_type (str): The config dict for embedding | |
conv layer type selection. Default: "Conv2d. | |
kernel_size (int): The kernel_size of embedding conv. Default: 16. | |
stride (int): The slide stride of embedding conv. | |
Default: None (Would be set as `kernel_size`). | |
padding (int | tuple | string ): The padding length of | |
embedding conv. When it is a string, it means the mode | |
of adaptive padding, support "same" and "corner" now. | |
Default: "corner". | |
dilation (int): The dilation rate of embedding conv. Default: 1. | |
bias (bool): Bias of embed conv. Default: True. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: None. | |
input_size (int | tuple | None): The size of input, which will be | |
used to calculate the out size. Only work when `dynamic_size` | |
is False. Default: None. | |
init_cfg (`mmengine.ConfigDict`, optional): The Config for | |
initialization. Default: None. | |
""" | |
def __init__(self, | |
in_channels: int = 3, | |
embed_dims: int = 768, | |
conv_type: str = 'Conv2d', | |
kernel_size: int = 16, | |
stride: int = 16, | |
padding: Union[int, tuple, str] = 'corner', | |
dilation: int = 1, | |
bias: bool = True, | |
norm_cfg: OptConfigType = None, | |
input_size: Union[int, tuple] = None, | |
init_cfg: OptConfigType = None) -> None: | |
super(PatchEmbed, self).__init__(init_cfg=init_cfg) | |
self.embed_dims = embed_dims | |
if stride is None: | |
stride = kernel_size | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
if isinstance(padding, str): | |
self.adap_padding = AdaptivePadding( | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=padding) | |
# disable the padding of conv | |
padding = 0 | |
else: | |
self.adap_padding = None | |
padding = to_2tuple(padding) | |
self.projection = build_conv_layer( | |
dict(type=conv_type), | |
in_channels=in_channels, | |
out_channels=embed_dims, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias) | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, embed_dims)[1] | |
else: | |
self.norm = None | |
if input_size: | |
input_size = to_2tuple(input_size) | |
# `init_out_size` would be used outside to | |
# calculate the num_patches | |
# when `use_abs_pos_embed` outside | |
self.init_input_size = input_size | |
if self.adap_padding: | |
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) | |
input_h, input_w = input_size | |
input_h = input_h + pad_h | |
input_w = input_w + pad_w | |
input_size = (input_h, input_w) | |
# https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html | |
h_out = (input_size[0] + 2 * padding[0] - dilation[0] * | |
(kernel_size[0] - 1) - 1) // stride[0] + 1 | |
w_out = (input_size[1] + 2 * padding[1] - dilation[1] * | |
(kernel_size[1] - 1) - 1) // stride[1] + 1 | |
self.init_out_size = (h_out, w_out) | |
else: | |
self.init_input_size = None | |
self.init_out_size = None | |
def forward(self, x: Tensor) -> Tuple[Tensor, Tuple[int]]: | |
""" | |
Args: | |
x (Tensor): Has shape (B, C, H, W). In most case, C is 3. | |
Returns: | |
tuple: Contains merged results and its spatial shape. | |
- x (Tensor): Has shape (B, out_h * out_w, embed_dims) | |
- out_size (tuple[int]): Spatial shape of x, arrange as | |
(out_h, out_w). | |
""" | |
if self.adap_padding: | |
x = self.adap_padding(x) | |
x = self.projection(x) | |
out_size = (x.shape[2], x.shape[3]) | |
x = x.flatten(2).transpose(1, 2) | |
if self.norm is not None: | |
x = self.norm(x) | |
return x, out_size | |
class PatchMerging(BaseModule): | |
"""Merge patch feature map. | |
This layer groups feature map by kernel_size, and applies norm and linear | |
layers to the grouped feature map. Our implementation uses `nn.Unfold` to | |
merge patch, which is about 25% faster than original implementation. | |
Instead, we need to modify pretrained models for compatibility. | |
Args: | |
in_channels (int): The num of input channels. | |
to gets fully covered by filter and stride you specified.. | |
Default: True. | |
out_channels (int): The num of output channels. | |
kernel_size (int | tuple, optional): the kernel size in the unfold | |
layer. Defaults to 2. | |
stride (int | tuple, optional): the stride of the sliding blocks in the | |
unfold layer. Default: None. (Would be set as `kernel_size`) | |
padding (int | tuple | string ): The padding length of | |
embedding conv. When it is a string, it means the mode | |
of adaptive padding, support "same" and "corner" now. | |
Default: "corner". | |
dilation (int | tuple, optional): dilation parameter in the unfold | |
layer. Default: 1. | |
bias (bool, optional): Whether to add bias in linear layer or not. | |
Defaults: False. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: dict(type='LN'). | |
init_cfg (dict, optional): The extra config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels: int, | |
out_channels: int, | |
kernel_size: Optional[Union[int, tuple]] = 2, | |
stride: Optional[Union[int, tuple]] = None, | |
padding: Union[int, tuple, str] = 'corner', | |
dilation: Optional[Union[int, tuple]] = 1, | |
bias: Optional[bool] = False, | |
norm_cfg: OptConfigType = dict(type='LN'), | |
init_cfg: OptConfigType = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if stride: | |
stride = stride | |
else: | |
stride = kernel_size | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
if isinstance(padding, str): | |
self.adap_padding = AdaptivePadding( | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=padding) | |
# disable the padding of unfold | |
padding = 0 | |
else: | |
self.adap_padding = None | |
padding = to_2tuple(padding) | |
self.sampler = nn.Unfold( | |
kernel_size=kernel_size, | |
dilation=dilation, | |
padding=padding, | |
stride=stride) | |
sample_dim = kernel_size[0] * kernel_size[1] * in_channels | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, sample_dim)[1] | |
else: | |
self.norm = None | |
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) | |
def forward(self, x: Tensor, | |
input_size: Tuple[int]) -> Tuple[Tensor, Tuple[int]]: | |
""" | |
Args: | |
x (Tensor): Has shape (B, H*W, C_in). | |
input_size (tuple[int]): The spatial shape of x, arrange as (H, W). | |
Default: None. | |
Returns: | |
tuple: Contains merged results and its spatial shape. | |
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) | |
- out_size (tuple[int]): Spatial shape of x, arrange as | |
(Merged_H, Merged_W). | |
""" | |
B, L, C = x.shape | |
assert isinstance(input_size, Sequence), f'Expect ' \ | |
f'input_size is ' \ | |
f'`Sequence` ' \ | |
f'but get {input_size}' | |
H, W = input_size | |
assert L == H * W, 'input feature has wrong size' | |
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W | |
# Use nn.Unfold to merge patch. About 25% faster than original method, | |
# but need to modify pretrained model for compatibility | |
if self.adap_padding: | |
x = self.adap_padding(x) | |
H, W = x.shape[-2:] | |
x = self.sampler(x) | |
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) | |
out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * | |
(self.sampler.kernel_size[0] - 1) - | |
1) // self.sampler.stride[0] + 1 | |
out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * | |
(self.sampler.kernel_size[1] - 1) - | |
1) // self.sampler.stride[1] + 1 | |
output_size = (out_h, out_w) | |
x = x.transpose(1, 2) # B, H/2*W/2, 4*C | |
x = self.norm(x) if self.norm else x | |
x = self.reduction(x) | |
return x, output_size | |
class ConditionalAttention(BaseModule): | |
"""A wrapper of conditional attention, dropout and residual connection. | |
Args: | |
embed_dims (int): The embedding dimension. | |
num_heads (int): Parallel attention heads. | |
attn_drop (float): A Dropout layer on attn_output_weights. | |
Default: 0.0. | |
proj_drop: A Dropout layer after `nn.MultiheadAttention`. | |
Default: 0.0. | |
cross_attn (bool): Whether the attention module is for cross attention. | |
Default: False | |
keep_query_pos (bool): Whether to transform query_pos before cross | |
attention. | |
Default: False. | |
batch_first (bool): When it is True, Key, Query and Value are shape of | |
(batch, n, embed_dim), otherwise (n, batch, embed_dim). | |
Default: True. | |
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
embed_dims: int, | |
num_heads: int, | |
attn_drop: float = 0., | |
proj_drop: float = 0., | |
cross_attn: bool = False, | |
keep_query_pos: bool = False, | |
batch_first: bool = True, | |
init_cfg: OptMultiConfig = None): | |
super().__init__(init_cfg=init_cfg) | |
assert batch_first is True, 'Set `batch_first`\ | |
to False is NOT supported in ConditionalAttention. \ | |
First dimension of all DETRs in mmdet is `batch`, \ | |
please set `batch_first` to True.' | |
self.cross_attn = cross_attn | |
self.keep_query_pos = keep_query_pos | |
self.embed_dims = embed_dims | |
self.num_heads = num_heads | |
self.attn_drop = Dropout(attn_drop) | |
self.proj_drop = Dropout(proj_drop) | |
self._init_layers() | |
def _init_layers(self): | |
"""Initialize layers for qkv projection.""" | |
embed_dims = self.embed_dims | |
self.qcontent_proj = Linear(embed_dims, embed_dims) | |
self.qpos_proj = Linear(embed_dims, embed_dims) | |
self.kcontent_proj = Linear(embed_dims, embed_dims) | |
self.kpos_proj = Linear(embed_dims, embed_dims) | |
self.v_proj = Linear(embed_dims, embed_dims) | |
if self.cross_attn: | |
self.qpos_sine_proj = Linear(embed_dims, embed_dims) | |
self.out_proj = Linear(embed_dims, embed_dims) | |
nn.init.constant_(self.out_proj.bias, 0.) | |
def forward_attn(self, | |
query: Tensor, | |
key: Tensor, | |
value: Tensor, | |
attn_mask: Tensor = None, | |
key_padding_mask: Tensor = None) -> Tuple[Tensor]: | |
"""Forward process for `ConditionalAttention`. | |
Args: | |
query (Tensor): The input query with shape [bs, num_queries, | |
embed_dims]. | |
key (Tensor): The key tensor with shape [bs, num_keys, | |
embed_dims]. | |
If None, the `query` will be used. Defaults to None. | |
value (Tensor): The value tensor with same shape as `key`. | |
Same in `nn.MultiheadAttention.forward`. Defaults to None. | |
If None, the `key` will be used. | |
attn_mask (Tensor): ByteTensor mask with shape [num_queries, | |
num_keys]. Same in `nn.MultiheadAttention.forward`. | |
Defaults to None. | |
key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys]. | |
Defaults to None. | |
Returns: | |
Tuple[Tensor]: Attention outputs of shape :math:`(N, L, E)`, | |
where :math:`N` is the batch size, :math:`L` is the target | |
sequence length , and :math:`E` is the embedding dimension | |
`embed_dim`. Attention weights per head of shape :math:` | |
(num_heads, L, S)`. where :math:`N` is batch size, :math:`L` | |
is target sequence length, and :math:`S` is the source sequence | |
length. | |
""" | |
assert key.size(1) == value.size(1), \ | |
f'{"key, value must have the same sequence length"}' | |
assert query.size(0) == key.size(0) == value.size(0), \ | |
f'{"batch size must be equal for query, key, value"}' | |
assert query.size(2) == key.size(2), \ | |
f'{"q_dims, k_dims must be equal"}' | |
assert value.size(2) == self.embed_dims, \ | |
f'{"v_dims must be equal to embed_dims"}' | |
bs, tgt_len, hidden_dims = query.size() | |
_, src_len, _ = key.size() | |
head_dims = hidden_dims // self.num_heads | |
v_head_dims = self.embed_dims // self.num_heads | |
assert head_dims * self.num_heads == hidden_dims, \ | |
f'{"hidden_dims must be divisible by num_heads"}' | |
scaling = float(head_dims)**-0.5 | |
q = query * scaling | |
k = key | |
v = value | |
if attn_mask is not None: | |
assert attn_mask.dtype == torch.float32 or \ | |
attn_mask.dtype == torch.float64 or \ | |
attn_mask.dtype == torch.float16 or \ | |
attn_mask.dtype == torch.uint8 or \ | |
attn_mask.dtype == torch.bool, \ | |
'Only float, byte, and bool types are supported for \ | |
attn_mask' | |
if attn_mask.dtype == torch.uint8: | |
warnings.warn('Byte tensor for attn_mask is deprecated.\ | |
Use bool tensor instead.') | |
attn_mask = attn_mask.to(torch.bool) | |
if attn_mask.dim() == 2: | |
attn_mask = attn_mask.unsqueeze(0) | |
if list(attn_mask.size()) != [1, query.size(1), key.size(1)]: | |
raise RuntimeError( | |
'The size of the 2D attn_mask is not correct.') | |
elif attn_mask.dim() == 3: | |
if list(attn_mask.size()) != [ | |
bs * self.num_heads, | |
query.size(1), | |
key.size(1) | |
]: | |
raise RuntimeError( | |
'The size of the 3D attn_mask is not correct.') | |
else: | |
raise RuntimeError( | |
"attn_mask's dimension {} is not supported".format( | |
attn_mask.dim())) | |
# attn_mask's dim is 3 now. | |
if key_padding_mask is not None and key_padding_mask.dtype == int: | |
key_padding_mask = key_padding_mask.to(torch.bool) | |
q = q.contiguous().view(bs, tgt_len, self.num_heads, | |
head_dims).permute(0, 2, 1, 3).flatten(0, 1) | |
if k is not None: | |
k = k.contiguous().view(bs, src_len, self.num_heads, | |
head_dims).permute(0, 2, 1, | |
3).flatten(0, 1) | |
if v is not None: | |
v = v.contiguous().view(bs, src_len, self.num_heads, | |
v_head_dims).permute(0, 2, 1, | |
3).flatten(0, 1) | |
if key_padding_mask is not None: | |
assert key_padding_mask.size(0) == bs | |
assert key_padding_mask.size(1) == src_len | |
attn_output_weights = torch.bmm(q, k.transpose(1, 2)) | |
assert list(attn_output_weights.size()) == [ | |
bs * self.num_heads, tgt_len, src_len | |
] | |
if attn_mask is not None: | |
if attn_mask.dtype == torch.bool: | |
attn_output_weights.masked_fill_(attn_mask, float('-inf')) | |
else: | |
attn_output_weights += attn_mask | |
if key_padding_mask is not None: | |
attn_output_weights = attn_output_weights.view( | |
bs, self.num_heads, tgt_len, src_len) | |
attn_output_weights = attn_output_weights.masked_fill( | |
key_padding_mask.unsqueeze(1).unsqueeze(2), | |
float('-inf'), | |
) | |
attn_output_weights = attn_output_weights.view( | |
bs * self.num_heads, tgt_len, src_len) | |
attn_output_weights = F.softmax( | |
attn_output_weights - | |
attn_output_weights.max(dim=-1, keepdim=True)[0], | |
dim=-1) | |
attn_output_weights = self.attn_drop(attn_output_weights) | |
attn_output = torch.bmm(attn_output_weights, v) | |
assert list( | |
attn_output.size()) == [bs * self.num_heads, tgt_len, v_head_dims] | |
attn_output = attn_output.view(bs, self.num_heads, tgt_len, | |
v_head_dims).permute(0, 2, 1, | |
3).flatten(2) | |
attn_output = self.out_proj(attn_output) | |
# average attention weights over heads | |
attn_output_weights = attn_output_weights.view(bs, self.num_heads, | |
tgt_len, src_len) | |
return attn_output, attn_output_weights.sum(dim=1) / self.num_heads | |
def forward(self, | |
query: Tensor, | |
key: Tensor, | |
query_pos: Tensor = None, | |
ref_sine_embed: Tensor = None, | |
key_pos: Tensor = None, | |
attn_mask: Tensor = None, | |
key_padding_mask: Tensor = None, | |
is_first: bool = False) -> Tensor: | |
"""Forward function for `ConditionalAttention`. | |
Args: | |
query (Tensor): The input query with shape [bs, num_queries, | |
embed_dims]. | |
key (Tensor): The key tensor with shape [bs, num_keys, | |
embed_dims]. | |
If None, the `query` will be used. Defaults to None. | |
query_pos (Tensor): The positional encoding for query in self | |
attention, with the same shape as `x`. If not None, it will | |
be added to `x` before forward function. | |
Defaults to None. | |
query_sine_embed (Tensor): The positional encoding for query in | |
cross attention, with the same shape as `x`. If not None, it | |
will be added to `x` before forward function. | |
Defaults to None. | |
key_pos (Tensor): The positional encoding for `key`, with the | |
same shape as `key`. Defaults to None. If not None, it will | |
be added to `key` before forward function. If None, and | |
`query_pos` has the same shape as `key`, then `query_pos` | |
will be used for `key_pos`. Defaults to None. | |
attn_mask (Tensor): ByteTensor mask with shape [num_queries, | |
num_keys]. Same in `nn.MultiheadAttention.forward`. | |
Defaults to None. | |
key_padding_mask (Tensor): ByteTensor with shape [bs, num_keys]. | |
Defaults to None. | |
is_first (bool): A indicator to tell whether the current layer | |
is the first layer of the decoder. | |
Defaults to False. | |
Returns: | |
Tensor: forwarded results with shape | |
[bs, num_queries, embed_dims]. | |
""" | |
if self.cross_attn: | |
q_content = self.qcontent_proj(query) | |
k_content = self.kcontent_proj(key) | |
v = self.v_proj(key) | |
bs, nq, c = q_content.size() | |
_, hw, _ = k_content.size() | |
k_pos = self.kpos_proj(key_pos) | |
if is_first or self.keep_query_pos: | |
q_pos = self.qpos_proj(query_pos) | |
q = q_content + q_pos | |
k = k_content + k_pos | |
else: | |
q = q_content | |
k = k_content | |
q = q.view(bs, nq, self.num_heads, c // self.num_heads) | |
query_sine_embed = self.qpos_sine_proj(ref_sine_embed) | |
query_sine_embed = query_sine_embed.view(bs, nq, self.num_heads, | |
c // self.num_heads) | |
q = torch.cat([q, query_sine_embed], dim=3).view(bs, nq, 2 * c) | |
k = k.view(bs, hw, self.num_heads, c // self.num_heads) | |
k_pos = k_pos.view(bs, hw, self.num_heads, c // self.num_heads) | |
k = torch.cat([k, k_pos], dim=3).view(bs, hw, 2 * c) | |
ca_output = self.forward_attn( | |
query=q, | |
key=k, | |
value=v, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask)[0] | |
query = query + self.proj_drop(ca_output) | |
else: | |
q_content = self.qcontent_proj(query) | |
q_pos = self.qpos_proj(query_pos) | |
k_content = self.kcontent_proj(query) | |
k_pos = self.kpos_proj(query_pos) | |
v = self.v_proj(query) | |
q = q_content if q_pos is None else q_content + q_pos | |
k = k_content if k_pos is None else k_content + k_pos | |
sa_output = self.forward_attn( | |
query=q, | |
key=k, | |
value=v, | |
attn_mask=attn_mask, | |
key_padding_mask=key_padding_mask)[0] | |
query = query + self.proj_drop(sa_output) | |
return query | |
class MLP(BaseModule): | |
"""Very simple multi-layer perceptron (also called FFN) with relu. Mostly | |
used in DETR series detectors. | |
Args: | |
input_dim (int): Feature dim of the input tensor. | |
hidden_dim (int): Feature dim of the hidden layer. | |
output_dim (int): Feature dim of the output tensor. | |
num_layers (int): Number of FFN layers. As the last | |
layer of MLP only contains FFN (Linear). | |
""" | |
def __init__(self, input_dim: int, hidden_dim: int, output_dim: int, | |
num_layers: int) -> None: | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = ModuleList( | |
Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x: Tensor) -> Tensor: | |
"""Forward function of MLP. | |
Args: | |
x (Tensor): The input feature, has shape | |
(num_queries, bs, input_dim). | |
Returns: | |
Tensor: The output feature, has shape | |
(num_queries, bs, output_dim). | |
""" | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |
class DynamicConv(BaseModule): | |
"""Implements Dynamic Convolution. | |
This module generate parameters for each sample and | |
use bmm to implement 1*1 convolution. Code is modified | |
from the `official github repo <https://github.com/PeizeSun/ | |
SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ . | |
Args: | |
in_channels (int): The input feature channel. | |
Defaults to 256. | |
feat_channels (int): The inner feature channel. | |
Defaults to 64. | |
out_channels (int, optional): The output feature channel. | |
When not specified, it will be set to `in_channels` | |
by default | |
input_feat_shape (int): The shape of input feature. | |
Defaults to 7. | |
with_proj (bool): Project two-dimentional feature to | |
one-dimentional feature. Default to True. | |
act_cfg (dict): The activation config for DynamicConv. | |
norm_cfg (dict): Config dict for normalization layer. Default | |
layer normalization. | |
init_cfg (obj:`mmengine.ConfigDict`): The Config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels: int = 256, | |
feat_channels: int = 64, | |
out_channels: Optional[int] = None, | |
input_feat_shape: int = 7, | |
with_proj: bool = True, | |
act_cfg: OptConfigType = dict(type='ReLU', inplace=True), | |
norm_cfg: OptConfigType = dict(type='LN'), | |
init_cfg: OptConfigType = None) -> None: | |
super(DynamicConv, self).__init__(init_cfg) | |
self.in_channels = in_channels | |
self.feat_channels = feat_channels | |
self.out_channels_raw = out_channels | |
self.input_feat_shape = input_feat_shape | |
self.with_proj = with_proj | |
self.act_cfg = act_cfg | |
self.norm_cfg = norm_cfg | |
self.out_channels = out_channels if out_channels else in_channels | |
self.num_params_in = self.in_channels * self.feat_channels | |
self.num_params_out = self.out_channels * self.feat_channels | |
self.dynamic_layer = nn.Linear( | |
self.in_channels, self.num_params_in + self.num_params_out) | |
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1] | |
self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1] | |
self.activation = build_activation_layer(act_cfg) | |
num_output = self.out_channels * input_feat_shape**2 | |
if self.with_proj: | |
self.fc_layer = nn.Linear(num_output, self.out_channels) | |
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1] | |
def forward(self, param_feature: Tensor, input_feature: Tensor) -> Tensor: | |
"""Forward function for `DynamicConv`. | |
Args: | |
param_feature (Tensor): The feature can be used | |
to generate the parameter, has shape | |
(num_all_proposals, in_channels). | |
input_feature (Tensor): Feature that | |
interact with parameters, has shape | |
(num_all_proposals, in_channels, H, W). | |
Returns: | |
Tensor: The output feature has shape | |
(num_all_proposals, out_channels). | |
""" | |
input_feature = input_feature.flatten(2).permute(2, 0, 1) | |
input_feature = input_feature.permute(1, 0, 2) | |
parameters = self.dynamic_layer(param_feature) | |
param_in = parameters[:, :self.num_params_in].view( | |
-1, self.in_channels, self.feat_channels) | |
param_out = parameters[:, -self.num_params_out:].view( | |
-1, self.feat_channels, self.out_channels) | |
# input_feature has shape (num_all_proposals, H*W, in_channels) | |
# param_in has shape (num_all_proposals, in_channels, feat_channels) | |
# feature has shape (num_all_proposals, H*W, feat_channels) | |
features = torch.bmm(input_feature, param_in) | |
features = self.norm_in(features) | |
features = self.activation(features) | |
# param_out has shape (batch_size, feat_channels, out_channels) | |
features = torch.bmm(features, param_out) | |
features = self.norm_out(features) | |
features = self.activation(features) | |
if self.with_proj: | |
features = features.flatten(1) | |
features = self.fc_layer(features) | |
features = self.fc_norm(features) | |
features = self.activation(features) | |
return features | |