3DFauna_demo / video3d /trainer_few_shot.py
kyleleey
update
e2db5d0
raw
history blame
60.9 kB
import os
import os.path as osp
from copy import deepcopy
from collections import OrderedDict
import glob
from datetime import datetime
import random
import copy
import imageio
import torch
# import clip
import torchvision.transforms.functional as tvf
import video3d.utils.meters as meters
import video3d.utils.misc as misc
# from video3d.dataloaders import get_image_loader
from video3d.dataloaders_ddp import get_sequence_loader_ddp, get_sequence_loader_quadrupeds, get_test_loader_quadrupeds
from . import discriminator_architecture
def sample_frames(batch, num_sample_frames, iteration, stride=1):
## window slicing sampling
images, masks, flows, bboxs, bg_image, seq_idx, frame_idx = batch
num_seqs, total_num_frames = images.shape[:2]
# start_frame_idx = iteration % (total_num_frames - num_sample_frames +1)
## forward and backward
num_windows = total_num_frames - num_sample_frames +1
start_frame_idx = (iteration * stride) % (2*num_windows)
## x' = (2n-1)/2 - |(2n-1)/2 - x| : 0,1,2,3,4,5 -> 0,1,2,2,1,0
mid_val = (2*num_windows -1) /2
start_frame_idx = int(mid_val - abs(mid_val -start_frame_idx))
new_batch = images[:, start_frame_idx:start_frame_idx+num_sample_frames], \
masks[:, start_frame_idx:start_frame_idx+num_sample_frames], \
flows[:, start_frame_idx:start_frame_idx+num_sample_frames-1], \
bboxs[:, start_frame_idx:start_frame_idx+num_sample_frames], \
bg_image, \
seq_idx, \
frame_idx[:, start_frame_idx:start_frame_idx+num_sample_frames]
return new_batch
def indefinite_generator(loader):
while True:
for x in loader:
yield x
def indefinite_generator_from_list(loaders):
while True:
random_idx = random.randint(0, len(loaders)-1)
for x in loaders[random_idx]:
yield x
break
def get_optimizer(model, lr=0.0001, betas=(0.9, 0.999), weight_decay=0):
return torch.optim.Adam(
filter(lambda p: p.requires_grad, model.parameters()),
lr=lr, betas=betas, weight_decay=weight_decay)
class Fewshot_Trainer:
def __init__(self, cfgs, model):
# only now supports one gpu
self.cfgs = cfgs
# here should be the one gpu ddp setting
self.rank = cfgs.get('rank', 0)
self.world_size = cfgs.get('world_size', 1)
self.use_ddp = cfgs.get('use_ddp', True)
self.device = cfgs.get('device', 'cpu')
self.num_epochs = cfgs.get('num_epochs', 1)
self.lr = cfgs.get('few_shot_lr', 1e-4)
self.dataset = 'image'
self.metrics_trace = meters.MetricsTrace()
self.make_metrics = lambda m=None: meters.StandardMetrics(m)
self.archive_code = cfgs.get('archive_code', True)
self.batch_size = cfgs.get('batch_size', 64)
self.in_image_size = cfgs.get('in_image_size', 256)
self.out_image_size = cfgs.get('out_image_size', 256)
self.num_workers = cfgs.get('num_workers', 4)
self.checkpoint_dir = cfgs.get('checkpoint_dir', 'results')
misc.xmkdir(self.checkpoint_dir)
self.few_shot_resume = cfgs.get('few_shot_resume', False)
self.save_checkpoint_freq = cfgs.get('save_checkpoint_freq', 1)
self.keep_num_checkpoint = cfgs.get('keep_num_checkpoint', 2) # -1 for keeping all checkpoints
self.few_shot_data_dir = cfgs.get('few_shot_data_dir', None)
assert self.few_shot_data_dir is not None
# in case we add more data source
if isinstance(self.few_shot_data_dir, list):
self.few_shot_data_dir_more = self.few_shot_data_dir[1:]
self.few_shot_data_dir = self.few_shot_data_dir[0]
else:
self.few_shot_data_dir_more = None
assert "data_resize_update" in self.few_shot_data_dir # TODO: a hack way to make sure not using wrong data, needs to remove
self.few_shot_categories, self.few_shot_categories_paths = self.parse_few_shot_categories(self.few_shot_data_dir, self.few_shot_data_dir_more)
# if we need test categories, we pop it from self.few_shot_categories and self.few_shot_categories_path
# the test category needs to be category from few-shot, and we're using bs=1 on them, no need for back views enhancement (for now, use back view images, but don't duplicate them)
self.test_category_num = cfgs.get('few_shot_test_category_num', 0)
self.test_category_names = cfgs.get('few_shot_test_category_names', None)
if self.test_category_num > 0:
# if we have valid test_category names, then use them, the number doesn't need to be equal
if self.test_category_names is not None:
test_cats = self.test_category_names
else:
test_cats = list(self.few_shot_categories_paths.keys())[-(self.test_category_num):]
test_categories_paths = {}
for test_cat in test_cats:
test_categories_paths.update({test_cat: self.few_shot_categories_paths[test_cat]})
assert test_cat in self.few_shot_categories
self.few_shot_categories.remove(test_cat)
self.few_shot_categories_paths.pop(test_cat)
self.test_categories_paths = test_categories_paths
else:
self.test_categories_paths = None
# also load the original 7 categories
self.original_train_data_path = cfgs.get('train_data_dir', None)
self.original_val_data_path = cfgs.get('val_data_dir', None)
self.original_categories = []
self.original_categories_paths = self.original_train_data_path
for k, v in self.original_train_data_path.items():
self.original_categories.append(k)
self.categories = self.original_categories + self.few_shot_categories
self.categories_paths = self.original_train_data_path.copy()
self.categories_paths.update(self.few_shot_categories_paths)
print(f'Using {len(self.categories)} cateogires: ', self.categories)
# initialize new things
# self.original_classes_num = cfgs.get('few_shot_original_classes_num', 7)
self.original_classes_num = len(self.original_categories)
self.new_classes_num = len(self.categories) - self.original_classes_num
self.combine_dataset = cfgs.get('combine_dataset', False)
assert self.combine_dataset, "we should use combine dataset, it's up to date"
if self.combine_dataset:
self.train_loader, self.val_loader, self.test_loader = self.get_data_loaders_quadrupeds(self.cfgs, self.batch_size, self.num_workers, self.in_image_size, self.out_image_size)
else:
self.train_loader_few_shot, self.val_loader_few_shot = self.get_data_loaders_few_shot(self.cfgs, self.batch_size, self.num_workers, self.in_image_size, self.out_image_size)
self.train_loader_original, self.val_loader_original = self.get_data_loaders_original(self.cfgs, self.batch_size, self.num_workers, self.in_image_size, self.out_image_size)
self.train_loader = self.train_loader_original + self.train_loader_few_shot
if self.val_loader_few_shot is not None and self.val_loader_original is not None:
self.val_loader = self.val_loader_original + self.val_loader_few_shot
self.num_iterations = cfgs.get('num_iterations', 0)
if self.num_iterations != 0:
self.use_total_iterations = True
else:
self.use_total_iterations = False
if self.use_total_iterations:
# reset the epoch related cfgs
dataloader_length = max([len(loader) for loader in self.train_loader]) * len(self.train_loader)
print("Total length of data loader is: ", dataloader_length)
total_epoch = int(self.num_iterations / dataloader_length) + 1
print(f'run for {total_epoch} epochs')
print('is_main_process()?', misc.is_main_process())
for k, v in cfgs.items():
if 'epoch' in k:
# if isinstance(v, list):
# new_v = [int(total_epoch * x / 120) + 1 for x in v]
# cfgs[k] = new_v
# elif isinstance(v, int):
# new_v = int(total_epoch * v / 120) + 1
# cfgs[k] = new_v
# a better transformation
if isinstance(v, int):
# use the floor int
new_v = int(total_epoch * v / 120)
cfgs[k] = new_v
elif isinstance(v, list):
if v[0] == v[1]:
# if the values in v are the same, then we use both the floor value
new_v = [int(total_epoch * x / 120) for x in v]
else:
# if the values are not the same, make the first using floor value and others using ceil value
new_v = [int(total_epoch * x / 120) + 1 for x in v]
new_v[0] = new_v[0] - 1
cfgs[k] = new_v
else:
continue
self.num_epochs = total_epoch
self.cub_start_epoch = cfgs.get('cub_start_epoch', 0)
self.cfgs = cfgs
# the model is with nothing now
self.model = model(cfgs)
self.metrics_trace = meters.MetricsTrace()
self.make_metrics = lambda m=None: meters.StandardMetrics(m)
self.use_logger = True
self.log_freq_images = cfgs.get('log_freq_images', 1000)
self.log_train_images = cfgs.get('log_train_images', False)
self.log_freq_losses = cfgs.get('log_freq_losses', 100)
self.save_result_freq = cfgs.get('save_result_freq', None)
self.train_result_dir = osp.join(self.checkpoint_dir, 'results')
self.fix_viz_batch = cfgs.get('fix_viz_batch', False)
self.visualize_validation = cfgs.get('visualize_validation', False)
# self.visualize_validation = False
self.iteration_save = cfgs.get('few_shot_iteration_save', False)
self.iteration_save_freq = cfgs.get('few_shot_iteration_save_freq', 2000)
self.enable_memory_bank = cfgs.get('enable_memory_bank', False)
if self.enable_memory_bank:
self.memory_bank_dim = 128
self.memory_bank_size = cfgs.get('memory_bank_size', 60)
self.memory_bank_topk = cfgs.get('memory_bank_topk', 10)
# assert self.memory_bank_topk < self.memory_bank_size
assert self.memory_bank_topk <= self.memory_bank_size
self.memory_retrieve = cfgs.get('memory_retrieve', 'cos-linear')
self.memory_bank_init = cfgs.get('memory_bank_init', 'random')
if self.memory_bank_init == 'copy':
# use trained 7 embeddings to initialize
num_piece = self.memory_bank_size // self.original_classes_num
num_left = self.memory_bank_size - num_piece * self.original_classes_num
tmp_1 = torch.empty_like(self.model.netPrior.classes_vectors)
tmp_1 = tmp_1.copy_(self.model.netPrior.classes_vectors)
tmp_1 = tmp_1.unsqueeze(0).repeat(num_piece, 1, 1)
tmp_1 = tmp_1.reshape(tmp_1.shape[0] * tmp_1.shape[1], tmp_1.shape[-1])
if num_left > 0:
tmp_2 = torch.empty_like(self.model.netPrior.classes_vectors)
tmp_2 = tmp_2.copy_(self.model.netPrior.classes_vectors)
tmp_2 = tmp_2[:num_left]
tmp = torch.cat([tmp_1, tmp_2], dim=0)
else:
tmp = tmp_1
self.memory_bank = torch.nn.Parameter(tmp, requires_grad=True)
elif self.memory_bank_init == 'random':
self.memory_bank = torch.nn.Parameter(torch.nn.init.uniform_(torch.empty(self.memory_bank_size, self.memory_bank_dim), a=-0.05, b=0.05), requires_grad=True)
else:
raise NotImplementedError
self.memory_encoder = cfgs.get('memory_encoder', 'DINO') # if DINO then just use the network encoder
if self.memory_encoder == 'CLIP':
self.clip_model, _ = clip.load('ViT-B/32', self.device)
self.clip_model = self.clip_model.eval().requires_grad_(False)
self.clip_mean = [0.48145466, 0.4578275, 0.40821073]
self.clip_std = [0.26862954, 0.26130258, 0.27577711]
self.clip_reso = 224
self.memory_bank_keys_dim = 512
elif self.memory_encoder == 'DINO':
self.memory_bank_keys_dim = 384
else:
raise NotImplementedError
memory_bank_keys = torch.nn.init.uniform_(torch.empty(self.memory_bank_size, self.memory_bank_keys_dim), a=-0.05, b=0.05)
self.memory_bank_keys = torch.nn.Parameter(memory_bank_keys, requires_grad=True)
else:
print("no memory bank, just use image embedding, this is only for one experiment!")
self.memory_encoder = cfgs.get('memory_encoder', 'DINO') # if DINO then just use the network encoder
if self.memory_encoder == 'CLIP':
self.clip_model, _ = clip.load('ViT-B/32', self.device)
self.clip_model = self.clip_model.eval().requires_grad_(False)
self.clip_mean = [0.48145466, 0.4578275, 0.40821073]
self.clip_std = [0.26862954, 0.26130258, 0.27577711]
self.clip_reso = 224
self.memory_bank_keys_dim = 512
elif self.memory_encoder == 'DINO':
self.memory_bank_keys_dim = 384
else:
raise NotImplementedError
self.prepare_model()
def parse_few_shot_categories(self, data_dir, data_dir_more=None):
# parse the categories data_dir
few_shot_category_num = self.cfgs.get('few_shot_category_num', -1)
assert few_shot_category_num != 0
categories = sorted(os.listdir(data_dir))
cnt = 0
category_names = []
category_names_paths = {}
for category in categories:
if osp.isdir(osp.join(self.few_shot_data_dir, category, 'train')):
category_path = osp.join(self.few_shot_data_dir, category, 'train')
category_names.append(category)
category_names_paths.update({category: category_path})
cnt += 1
if few_shot_category_num > 0 and cnt >= few_shot_category_num:
break
# more data
if data_dir_more is not None:
for data_dir_one in data_dir_more:
new_categories = os.listdir(data_dir_one)
for new_category in new_categories:
'''
if this category is not used before, add a new item
if there is this category before, add the paths to original paths,
if its a str, make it a list
if its already a list, append it
'''
if new_category not in category_names:
#TODO: a hacky way here, if in new data there is category used in 7-cat, we just make it a new one
if new_category in list(self.cfgs.get('train_data_dir', None).keys()):
new_category = '_' + new_category
category_names.append(new_category)
category_names_paths.update({
new_category: osp.join(data_dir_one, new_category, 'train')
})
else:
old_category_path = category_names_paths[new_category]
if isinstance(old_category_path, str):
category_names_paths[new_category] = [
old_category_path,
osp.join(data_dir_one, new_category, 'train')
]
elif isinstance(old_category_path, list):
old_category_path = old_category_path + [osp.join(data_dir_one, new_category, 'train')]
category_names_paths[new_category] = old_category_path
else:
raise NotImplementedError
# category_names = sorted(category_names)
return category_names, category_names_paths
def prepare_model(self):
# here we prepare the model weights at outside
# 1. load the pretrain weight
# 2. initialize anything new, like new class vectors
# 3. initialize new optimizer for chosen parameters
assert self.original_classes_num == len(self.model.netPrior.category_id_map)
# load pretrain
# if not assigned few_shot_checkpoint_name, then skip this part
if self.cfgs.get('few_shot_checkpoint_name', None) is not None:
original_checkpoint_path = osp.join(self.checkpoint_dir, self.cfgs.get('few_shot_checkpoint_name', 'checkpoint060.pth'))
assert osp.exists(original_checkpoint_path)
print(f"Loading pre-trained checkpoint from {original_checkpoint_path}")
cp = torch.load(original_checkpoint_path, map_location=self.device)
# if using local-texture network in fine-tuning, the texture in previous pre-train ckpt is global
# here we use a hack way, we just get rid of original texture ckpt
if (self.cfgs.get('texture_way', None) is not None) or (self.cfgs.get('texture_act', 'relu') != 'relu'):
new_netInstance_weights = {k: v for k, v in cp['netInstance'].items() if 'netTexture' not in k}
#find the new texture weights
texture_weights = self.model.netInstance.netTexture.state_dict()
#add the new weights to the new model weights
for k, v in texture_weights.items():
# for the overlapping part in netTexture, we also use them
# if ('netTexture.' + k) in cp['netInstance'].keys():
# new_netInstance_weights['netTexture.' + k] = cp['netInstance']['netTexture.' + k]
# else:
# new_netInstance_weights['netTexture.' + k] = v
new_netInstance_weights['netTexture.' + k] = v
_ = cp.pop("netInstance")
cp.update({"netInstance": new_netInstance_weights})
self.model.netInstance.load_state_dict(cp["netInstance"], strict=False) # For Deform
# self.model.netInstance.load_state_dict(cp["netInstance"])
self.model.netPrior.load_state_dict(cp["netPrior"])
self.original_total_iter = cp["total_iter"]
else:
print("not load any pre-train weight, the iter will start from 0, make sure you set all the needed parameters")
self.original_total_iter = 0
if not self.cfgs.get('disable_fewshot', False):
for i, category in enumerate(self.few_shot_categories):
category_id = self.original_classes_num + i
self.model.netPrior.category_id_map.update({category: category_id})
few_shot_class_vector_init = self.cfgs.get('few_shot_class_vector_init', 'random')
if few_shot_class_vector_init == 'random':
tmp = torch.nn.init.uniform_(torch.empty(self.new_classes_num, self.model.netPrior.classes_vectors.shape[-1]), a=-0.05, b=0.05)
tmp = tmp.to(self.model.netPrior.classes_vectors.device)
self.model.netPrior.classes_vectors = torch.nn.Parameter(torch.cat([self.model.netPrior.classes_vectors, tmp], dim=0))
elif few_shot_class_vector_init == 'copy':
num_7_cat_piece = self.new_classes_num // self.original_classes_num if self.new_classes_num > self.original_classes_num else 0
num_left = self.new_classes_num - num_7_cat_piece * self.original_classes_num
if num_7_cat_piece > 0:
tmp_1 = torch.empty_like(self.model.netPrior.classes_vectors)
tmp_1 = tmp_1.copy_(self.model.netPrior.classes_vectors)
tmp_1 = tmp_1.unsqueeze(0).repeat(num_7_cat_piece, 1, 1)
tmp_1 = tmp_1.reshape(tmp_1.shape[0] * tmp_1.shape[1], tmp_1.shape[-1])
else:
tmp_1 = None
if num_left > 0:
tmp_2 = torch.empty_like(self.model.netPrior.classes_vectors)
tmp_2 = tmp_2.copy_(self.model.netPrior.classes_vectors)
tmp_2 = tmp_2[:num_left]
else:
tmp_2 = None
if tmp_1 != None and tmp_2 != None:
tmp = torch.cat([tmp_1, tmp_2], dim=0)
elif tmp_1 == None and tmp_2 != None:
tmp = tmp_2
elif tmp_2 == None and tmp_1 != None:
tmp = tmp_1
else:
raise NotImplementedError
tmp = tmp.to(self.model.netPrior.classes_vectors.device)
self.model.netPrior.classes_vectors = torch.nn.Parameter(torch.cat([self.model.netPrior.classes_vectors, tmp], dim=0))
else:
raise NotImplementedError
else:
print("disable few shot, not increasing embedding vectors")
# initialize new optimizer
optimize_rule = self.cfgs.get('few_shot_optimize', 'all')
if optimize_rule == 'all':
optimize_list = [
{'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
{'name': 'net_Instance', 'params': list(self.model.netInstance.parameters()), 'lr': self.lr * 1.},
]
elif optimize_rule == 'only-emb':
optimize_list = [
{'name': 'class_embeddings', 'params': list([self.model.netPrior.classes_vectors]), 'lr': self.lr * 10.}
]
elif optimize_rule == 'emb-instance':
optimize_list = [
{'name': 'class_embeddings', 'params': list([self.model.netPrior.classes_vectors]), 'lr': self.lr * 10.},
{'name': 'net_Instance', 'params': list(self.model.netInstance.parameters()), 'lr': self.lr * 1.},
]
elif optimize_rule == 'custom':
optimize_list = [
{'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
{'name': 'netEncoder', 'params': list(self.model.netInstance.netEncoder.parameters()), 'lr': self.lr * 1.},
{'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.},
{'name': 'netPose', 'params': list(self.model.netInstance.netPose.parameters()), 'lr': self.lr * 0.01},
{'name': 'netArticulation', 'params': list(self.model.netInstance.netArticulation.parameters()), 'lr': self.lr * 1.},
{'name': 'netLight', 'params': list(self.model.netInstance.netLight.parameters()), 'lr': self.lr * 1.}
]
elif optimize_rule == 'custom-deform':
optimize_list = [
{'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
{'name': 'netEncoder', 'params': list(self.model.netInstance.netEncoder.parameters()), 'lr': self.lr * 1.},
{'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.},
{'name': 'netPose', 'params': list(self.model.netInstance.netPose.parameters()), 'lr': self.lr * 0.01},
{'name': 'netArticulation', 'params': list(self.model.netInstance.netArticulation.parameters()), 'lr': self.lr * 1.},
{'name': 'netLight', 'params': list(self.model.netInstance.netLight.parameters()), 'lr': self.lr * 1.},
{'name': 'netDeform', 'params': list(self.model.netInstance.netDeform.parameters()), 'lr': self.lr * 1.}
]
elif optimize_rule == 'texture':
optimize_list = [
{'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.}
]
elif optimize_rule == 'texture-light':
optimize_list = [
{'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.},
{'name': 'netLight', 'params': list(self.model.netInstance.netLight.parameters()), 'lr': self.lr * 1.}
]
elif optimize_rule == 'exp':
optimize_list = [
{'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
{'name': 'netEncoder', 'params': list(self.model.netInstance.netEncoder.parameters()), 'lr': self.lr * 1.},
{'name': 'netTexture', 'params': list(self.model.netInstance.netTexture.parameters()), 'lr': self.lr * 1.},
{'name': 'netPose', 'params': list(self.model.netInstance.netPose.parameters()), 'lr': self.lr * 1.},
{'name': 'netArticulation', 'params': list(self.model.netInstance.netArticulation.parameters()), 'lr': self.lr * 1.},
{'name': 'netLight', 'params': list(self.model.netInstance.netLight.parameters()), 'lr': self.lr * 1.},
{'name': 'netDeform', 'params': list(self.model.netInstance.netDeform.parameters()), 'lr': self.lr * 1.}
]
else:
raise NotImplementedError
if self.enable_memory_bank and optimize_rule != 'texture':
optimize_bank_components = self.cfgs.get('few_shot_optimize_bank', 'all')
if optimize_bank_components == 'value':
optimize_list += [
{'name': 'memory_bank', 'params': list([self.memory_bank]), 'lr': self.lr * 10.}
]
elif optimize_bank_components == 'key':
optimize_list += [
{'name': 'memory_bank_keys', 'params': list([self.memory_bank_keys]), 'lr': self.lr * 10.}
]
else:
optimize_list += [
{'name': 'memory_bank', 'params': list([self.memory_bank]), 'lr': self.lr * 10.},
{'name': 'memory_bank_keys', 'params': list([self.memory_bank_keys]), 'lr': self.lr * 10.}
]
if self.model.enable_vsd:
optimize_list += [
{'name': 'lora', 'params': list(self.model.stable_diffusion.parameters()), 'lr': self.lr}
]
# self.optimizerFewShot = torch.optim.Adam(
# [
# # {'name': 'class_embeddings', 'params': list([self.model.netPrior.classes_vectors]), 'lr': self.lr * 1.},
# {'name': 'net_Prior', 'params': list(self.model.netPrior.parameters()), 'lr': self.lr * 10.},
# {'name': 'net_Instance', 'params': list(self.model.netInstance.parameters()), 'lr': self.lr * 1.},
# # {'name': 'net_articulation', 'params': list(self.model.netInstance.netArticulation.parameters()), 'lr': self.lr * 10.}
# ], betas=(0.9, 0.99), eps=1e-15
# )
self.optimizerFewShot = torch.optim.Adam(optimize_list, betas=(0.9, 0.99), eps=1e-15)
# if self.cfgs.get('texture_way', None) is not None and self.cfgs.get('gan_tex', False):
if self.cfgs.get('gan_tex', False):
self.optimizerDiscTex = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.discriminator_texture.parameters()), lr=self.lr, betas=(0.9, 0.99), eps=1e-15)
def load_checkpoint(self, optim=True, checkpoint_name=None):
# use to load the checkpoint of model and optimizer in the finetuning
"""Search the specified/latest checkpoint in checkpoint_dir and load the model and optimizer."""
if checkpoint_name is not None:
checkpoint_path = osp.join(self.checkpoint_dir, checkpoint_name)
else:
checkpoints = sorted(glob.glob(osp.join(self.checkpoint_dir, '*.pth')))
if len(checkpoints) == 0:
return 0, 0
checkpoint_path = checkpoints[-1]
self.checkpoint_name = osp.basename(checkpoint_path)
print(f"Loading checkpoint from {checkpoint_path}")
cp = torch.load(checkpoint_path, map_location=self.device)
self.model.load_model_state(cp) # the cp has netPrior and netInstance as keys
if optim:
try:
self.optimizerFewShot.load_state_dict(cp['optimizerFewShot'])
except:
print('you should be using the local texture so dont need to load the previous optimizer')
if self.enable_memory_bank:
self.memory_bank_keys = cp['memory_bank_keys']
self.memory_bank = cp['memory_bank']
self.metrics_trace = cp['metrics_trace']
epoch = cp['epoch']
total_iter = cp['total_iter']
return epoch, total_iter
def save_checkpoint(self, epoch, total_iter=0, optim=True, use_iter=False):
"""Save model, optimizer, and metrics state to a checkpoint in checkpoint_dir for the specified epoch."""
misc.xmkdir(self.checkpoint_dir)
if use_iter:
checkpoint_path = osp.join(self.checkpoint_dir, f'iter{total_iter:07}.pth')
prefix = 'iter*.pth'
else:
checkpoint_path = osp.join(self.checkpoint_dir, f'checkpoint{epoch:03}.pth')
prefix = 'checkpoint*.pth'
state_dict = self.model.get_model_state()
if optim:
optimizer_state = {'optimizerFewShot': self.optimizerFewShot.state_dict()}
state_dict = {**state_dict, **optimizer_state}
state_dict['metrics_trace'] = self.metrics_trace
state_dict['epoch'] = epoch
state_dict['total_iter'] = total_iter
if self.enable_memory_bank:
state_dict['memory_bank_keys'] = self.memory_bank_keys
state_dict['memory_bank'] = self.memory_bank
print(f"Saving checkpoint to {checkpoint_path}")
torch.save(state_dict, checkpoint_path)
if self.keep_num_checkpoint > 0:
self.clean_checkpoint(self.checkpoint_dir, keep_num=self.keep_num_checkpoint, prefix=prefix)
def clean_checkpoint(self, checkpoint_dir, keep_num=2, prefix='checkpoint*.pth'):
if keep_num > 0:
names = list(sorted(
glob.glob(os.path.join(checkpoint_dir, prefix))
))
if len(names) > keep_num:
for name in names[:-keep_num]:
print(f"Deleting obslete checkpoint file {name}")
os.remove(name)
def get_data_loaders_few_shot(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
# support the train_data_loaders, and also an identical val_data_loader?
train_loader = val_loader = None
color_jitter_train = cfgs.get('color_jitter_train', None)
color_jitter_val = cfgs.get('color_jitter_val', None)
random_flip_train = cfgs.get('random_flip_train', False)
data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
num_sample_frames = cfgs.get('num_sample_frames', 2)
shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
load_background = cfgs.get('background_mode', 'none') == 'background'
rgb_suffix = cfgs.get('rgb_suffix', '.png')
load_dino_feature = cfgs.get('load_dino_feature', False)
dino_feature_dim = cfgs.get('dino_feature_dim', 64)
get_loader_ddp = lambda **kwargs: get_sequence_loader_ddp(
mode=data_loader_mode,
batch_size=batch_size,
num_workers=num_workers,
in_image_size=in_image_size,
out_image_size=out_image_size,
num_sample_frames=num_sample_frames,
load_background=load_background,
rgb_suffix=rgb_suffix,
load_dino_feature=load_dino_feature,
dino_feature_dim=dino_feature_dim,
flow_bool=0,
**kwargs)
print(f"Loading training data...")
train_loader = get_loader_ddp(data_dir=[self.original_classes_num, self.few_shot_categories_paths], rank=self.rank, world_size=self.world_size, use_few_shot=True, shuffle=False, color_jitter=color_jitter_train, random_flip=random_flip_train)
return train_loader, val_loader
def get_data_loaders_original(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
train_loader = val_loader = test_loader = None
color_jitter_train = cfgs.get('color_jitter_train', None)
color_jitter_val = cfgs.get('color_jitter_val', None)
random_flip_train = cfgs.get('random_flip_train', False)
data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
skip_beginning = cfgs.get('skip_beginning', 4)
skip_end = cfgs.get('skip_end', 4)
num_sample_frames = cfgs.get('num_sample_frames', 2)
min_seq_len = cfgs.get('min_seq_len', 10)
max_seq_len = cfgs.get('max_seq_len', 10)
debug_seq = cfgs.get('debug_seq', False)
random_sample_train_frames = cfgs.get('random_sample_train_frames', False)
shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
random_sample_val_frames = cfgs.get('random_sample_val_frames', False)
load_background = cfgs.get('background_mode', 'none') == 'background'
rgb_suffix = cfgs.get('rgb_suffix', '.png')
load_dino_feature = cfgs.get('load_dino_feature', False)
load_dino_cluster = cfgs.get('load_dino_cluster', False)
dino_feature_dim = cfgs.get('dino_feature_dim', 64)
get_loader_ddp = lambda **kwargs: get_sequence_loader_ddp(
mode=data_loader_mode,
batch_size=batch_size,
num_workers=num_workers,
in_image_size=in_image_size,
out_image_size=out_image_size,
debug_seq=debug_seq,
skip_beginning=skip_beginning,
skip_end=skip_end,
num_sample_frames=num_sample_frames,
min_seq_len=min_seq_len,
max_seq_len=max_seq_len,
load_background=load_background,
rgb_suffix=rgb_suffix,
load_dino_feature=load_dino_feature,
load_dino_cluster=load_dino_cluster,
dino_feature_dim=dino_feature_dim,
flow_bool=0,
**kwargs)
# just the train now
train_data_dir = self.original_categories_paths
if isinstance(train_data_dir, dict):
for data_path in train_data_dir.values():
assert osp.isdir(data_path), f"Training data directory does not exist: {data_path}"
elif isinstance(train_data_dir, str):
assert osp.isdir(train_data_dir), f"Training data directory does not exist: {train_data_dir}"
else:
raise ValueError("train_data_dir must be a string or a dict of strings")
print(f"Loading training data...")
# the train_data_dir is a dict and will go into the original dataset type
train_loader = get_loader_ddp(data_dir=train_data_dir, rank=self.rank, world_size=self.world_size, is_validation=False, use_few_shot=False, random_sample=random_sample_train_frames, shuffle=shuffle_train_seqs, dense_sample=True, color_jitter=color_jitter_train, random_flip=random_flip_train)
return train_loader, val_loader
def get_data_loaders_quadrupeds(self, cfgs, batch_size, num_workers, in_image_size, out_image_size):
train_loader = val_loader = test_loader = None
color_jitter_train = cfgs.get('color_jitter_train', None)
color_jitter_val = cfgs.get('color_jitter_val', None)
random_flip_train = cfgs.get('random_flip_train', False)
data_loader_mode = cfgs.get('data_loader_mode', 'n_frame')
skip_beginning = cfgs.get('skip_beginning', 4)
skip_end = cfgs.get('skip_end', 4)
num_sample_frames = cfgs.get('num_sample_frames', 2)
min_seq_len = cfgs.get('min_seq_len', 10)
max_seq_len = cfgs.get('max_seq_len', 10)
debug_seq = cfgs.get('debug_seq', False)
random_sample_train_frames = cfgs.get('random_sample_train_frames', False)
shuffle_train_seqs = cfgs.get('shuffle_train_seqs', False)
random_sample_val_frames = cfgs.get('random_sample_val_frames', False)
load_background = cfgs.get('background_mode', 'none') == 'background'
rgb_suffix = cfgs.get('rgb_suffix', '.png')
load_dino_feature = cfgs.get('load_dino_feature', False)
load_dino_cluster = cfgs.get('load_dino_cluster', False)
dino_feature_dim = cfgs.get('dino_feature_dim', 64)
enhance_back_view = cfgs.get('enhance_back_view', False)
enhance_back_view_path = cfgs.get('enhance_back_view_path', None)
override_categories = cfgs.get('override_categories', None)
disable_fewshot = cfgs.get('disable_fewshot', False)
dataset_split_num = cfgs.get('dataset_split_num', -1)
get_loader_ddp = lambda **kwargs: get_sequence_loader_quadrupeds(
mode=data_loader_mode,
num_workers=num_workers,
in_image_size=in_image_size,
out_image_size=out_image_size,
debug_seq=debug_seq,
skip_beginning=skip_beginning,
skip_end=skip_end,
num_sample_frames=num_sample_frames,
min_seq_len=min_seq_len,
max_seq_len=max_seq_len,
load_background=load_background,
rgb_suffix=rgb_suffix,
load_dino_feature=load_dino_feature,
load_dino_cluster=load_dino_cluster,
dino_feature_dim=dino_feature_dim,
flow_bool=0,
enhance_back_view=enhance_back_view,
enhance_back_view_path=enhance_back_view_path,
override_categories=override_categories,
disable_fewshot=disable_fewshot,
dataset_split_num=dataset_split_num,
**kwargs)
# just the train now
print(f"Loading training data...")
val_image_num = cfgs.get('few_shot_val_image_num', 5)
# the train_data_dir is a dict and will go into the original dataset type
train_loader = get_loader_ddp(original_data_dirs=self.original_categories_paths, few_shot_data_dirs=self.few_shot_categories_paths, original_num=self.original_classes_num, few_shot_num=self.new_classes_num, rank=self.rank, world_size=self.world_size, batch_size=batch_size, is_validation=False, val_image_num=val_image_num, shuffle=shuffle_train_seqs, dense_sample=True, color_jitter=color_jitter_train, random_flip=random_flip_train)
val_loader = get_loader_ddp(original_data_dirs=self.original_val_data_path, few_shot_data_dirs=self.few_shot_categories_paths, original_num=self.original_classes_num, few_shot_num=self.new_classes_num, rank=self.rank, world_size=self.world_size, batch_size=1, is_validation=True, val_image_num=val_image_num, shuffle=False, dense_sample=True, color_jitter=color_jitter_val, random_flip=False)
if self.test_categories_paths is not None:
get_test_loader_ddp = lambda **kwargs: get_test_loader_quadrupeds(
mode=data_loader_mode,
num_workers=num_workers,
in_image_size=in_image_size,
out_image_size=out_image_size,
debug_seq=debug_seq,
skip_beginning=skip_beginning,
skip_end=skip_end,
num_sample_frames=num_sample_frames,
min_seq_len=min_seq_len,
max_seq_len=max_seq_len,
load_background=load_background,
rgb_suffix=rgb_suffix,
load_dino_feature=load_dino_feature,
load_dino_cluster=load_dino_cluster,
dino_feature_dim=dino_feature_dim,
flow_bool=0,
enhance_back_view=enhance_back_view,
enhance_back_view_path=enhance_back_view_path,
**kwargs)
print(f"Loading testing data...")
test_loader = get_test_loader_ddp(test_data_dirs=self.test_categories_paths, rank=self.rank, world_size=self.world_size, batch_size=1, is_validation=True, shuffle=False, dense_sample=True, color_jitter=color_jitter_val, random_flip=False)
else:
test_loader = None
return train_loader, val_loader, test_loader
def forward_frozen_ViT(self, images):
# this part use the frozen pre-train ViT
x = images
with torch.no_grad():
b, c, h, w = x.shape
self.model.netInstance.netEncoder._feats = []
self.model.netInstance.netEncoder._register_hooks([11], 'key')
#self._register_hooks([11], 'token')
x = self.model.netInstance.netEncoder.ViT.prepare_tokens(x)
#x = self.ViT.prepare_tokens_with_masks(x)
for blk in self.model.netInstance.netEncoder.ViT.blocks:
x = blk(x)
out = self.model.netInstance.netEncoder.ViT.norm(x)
self.model.netInstance.netEncoder._unregister_hooks()
ph, pw = h // self.model.netInstance.netEncoder.patch_size, w // self.model.netInstance.netEncoder.patch_size
patch_out = out[:, 1:] # first is class token
patch_out = patch_out.reshape(b, ph, pw, self.model.netInstance.netEncoder.vit_feat_dim).permute(0, 3, 1, 2)
patch_key = self.model.netInstance.netEncoder._feats[0][:,:,1:] # B, num_heads, num_patches, dim
patch_key = patch_key.permute(0, 1, 3, 2).reshape(b, self.model.netInstance.netEncoder.vit_feat_dim, ph, pw)
global_feat = out[:, 0]
return global_feat
def forward_fix_embeddings(self, batch):
images = batch[0]
images = images.to(self.device)
batch_size, num_frames, _, h0, w0 = images.shape
images = images.reshape(batch_size*num_frames, *images.shape[2:]) # 0~1
if self.memory_encoder == 'DINO':
images_in = images * 2 - 1 # rescale to (-1, 1)
batch_features = self.forward_frozen_ViT(images_in)
elif self.memory_encoder == 'CLIP':
images_in = torch.nn.functional.interpolate(images, (self.clip_reso, self.clip_reso), mode='bilinear')
images_in = tvf.normalize(images_in, self.clip_mean, self.clip_std)
batch_features = self.clip_model.encode_image(images_in).float()
else:
raise NotImplementedError
return batch_features
def retrieve_memory_bank(self, batch_features, batch):
batch_size = batch_features.shape[0]
if self.memory_retrieve == 'cos-linear':
query = torch.nn.functional.normalize(batch_features.unsqueeze(1), dim=-1) # [B, 1, d_k]
key = torch.nn.functional.normalize(self.memory_bank_keys, dim=-1) # [size, d_k]
key = key.transpose(1, 0).unsqueeze(0).repeat(batch_size, 1, 1).to(query.device) # [B, d_k, size]
cos_dist = torch.bmm(query, key).squeeze(1) # [B, size], larger the more similar
rank_idx = torch.sort(cos_dist, dim=-1, descending=True)[1][:, :self.memory_bank_topk] # [B, k]
value = self.memory_bank.unsqueeze(0).repeat(batch_size, 1, 1).to(query.device) # [B, size, d_v]
out = torch.gather(value, dim=1, index=rank_idx[..., None].repeat(1, 1, self.memory_bank_dim)) # [B, k, d_v]
weights = torch.gather(cos_dist, dim=-1, index=rank_idx) # [B, k]
weights = torch.nn.functional.normalize(weights, p=1.0, dim=-1).unsqueeze(-1).repeat(1, 1, self.memory_bank_dim) # [B, k, d_v] weights have been normalized
out = weights * out
out = torch.sum(out, dim=1)
else:
raise NotImplementedError
batch_mean_out = torch.mean(out, dim=0)
weight_aux = {
'weights': weights[:, :, 0], # [B, k], weights from large to small
'pick_idx': rank_idx, # [B, k]
}
return batch_mean_out, out, weight_aux
def discriminator_texture_step(self):
image_iv = self.model.record_image_iv
image_rv = self.model.record_image_rv
image_gt = self.model.record_image_gt
self.model.record_image_iv = None
self.model.record_image_rv = None
self.model.record_image_gt = None
image_iv = image_iv.requires_grad_(True)
image_rv = image_rv.requires_grad_(True)
image_gt = image_gt.requires_grad_(True)
self.optimizerDiscTex.zero_grad()
disc_loss_gt = 0.0
disc_loss_iv = 0.0
disc_loss_rv = 0.0
grad_penalty = 0.0
# for the gt image, it can only be in real or not
if 'gt' in self.model.few_shot_gan_tex_real:
d_gt = self.model.discriminator_texture(image_gt)
disc_loss_gt += discriminator_architecture.bce_loss_target(d_gt, 1)
if image_gt.requires_grad:
grad_penalty_gt = 10. * discriminator_architecture.compute_grad2(d_gt, image_gt)
disc_loss_gt += grad_penalty_gt
grad_penalty += grad_penalty_gt
# for the input view image, it can be in real or fake
if 'iv' in self.model.few_shot_gan_tex_real:
d_iv = self.model.discriminator_texture(image_iv)
disc_loss_iv += discriminator_architecture.bce_loss_target(d_iv, 1)
if image_iv.requires_grad:
grad_penalty_iv = 10. * discriminator_architecture.compute_grad2(d_iv, image_iv)
disc_loss_iv += grad_penalty_iv
grad_penalty += grad_penalty_iv
elif 'iv' in self.model.few_shot_gan_tex_fake:
d_iv = self.model.discriminator_texture(image_iv)
disc_loss_iv += discriminator_architecture.bce_loss_target(d_iv, 0)
# for the random view image, it can only be in fake
if 'rv' in self.model.few_shot_gan_tex_fake:
d_rv = self.model.discriminator_texture(image_rv)
disc_loss_rv += discriminator_architecture.bce_loss_target(d_rv, 0)
all_loss = disc_loss_iv + disc_loss_rv + disc_loss_gt
all_loss = all_loss * self.cfgs.get('gan_tex_loss_discriminator_weight', 0.1)
self.discriminator_texture_loss = all_loss
self.discriminator_texture_loss.backward()
self.optimizerDiscTex.step()
self.discriminator_texture_loss = 0.
return {
'discriminator_loss': all_loss.detach(),
'discriminator_loss_iv': disc_loss_iv.detach(),
'discriminator_loss_rv': disc_loss_rv.detach(),
'discriminator_loss_gt': disc_loss_gt.detach(),
'discriminator_loss_grad': grad_penalty.detach()
}
def train(self):
"""Perform training."""
# archive code and configs
if self.archive_code:
misc.archive_code(osp.join(self.checkpoint_dir, 'archived_code.zip'), filetypes=['.py'])
misc.dump_yaml(osp.join(self.checkpoint_dir, 'configs.yml'), self.cfgs)
# initialize
start_epoch = 0
self.total_iter = 0
self.total_iter = self.original_total_iter
self.metrics_trace.reset()
self.model.to(self.device)
if self.model.enable_disc:
self.model.reset_only_disc_optimizer()
if self.few_shot_resume:
resume_model_name = self.cfgs.get('few_shot_resume_name', None)
start_epoch, self.total_iter = self.load_checkpoint(optim=True, checkpoint_name=resume_model_name)
self.model.ddp(self.rank, self.world_size)
# use tensorboard
if self.use_logger:
from torch.utils.tensorboard import SummaryWriter
self.logger = SummaryWriter(osp.join(self.checkpoint_dir, 'logs', datetime.now().strftime("%Y%m%d-%H%M%S")), flush_secs=10)
# self.viz_data_iterator = indefinite_generator_from_list(self.val_loader) if self.visualize_validation else indefinite_generator_from_list(self.train_loader)
self.viz_data_iterator = indefinite_generator(self.val_loader[0]) if self.visualize_validation else indefinite_generator(self.train_loader[0])
if self.fix_viz_batch:
self.viz_batch = next(self.viz_data_iterator)
if self.test_loader is not None:
self.viz_test_data_iterator = indefinite_generator(self.test_loader[0]) if self.visualize_validation else indefinite_generator(self.train_loader[0])
# run_epochs
epoch = 0
for epoch in range(start_epoch, self.num_epochs):
metrics = self.run_epoch(epoch)
if self.combine_dataset:
self.train_loader[0].dataset._shuffle_all()
self.metrics_trace.append("train", metrics)
if (epoch+1) % self.save_checkpoint_freq == 0:
self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True)
# if self.cfgs.get('pyplot_metrics', True):
# self.metrics_trace.plot(pdf_path=osp.join(self.checkpoint_dir, 'metrics.pdf'))
self.metrics_trace.save(osp.join(self.checkpoint_dir, 'metrics.json'))
print(f"Training completed for all {epoch+1} epochs.")
def run_epoch(self, epoch):
"""Run one training epoch."""
metrics = self.make_metrics()
self.model.set_train()
max_loader_len = max([len(loader) for loader in self.train_loader])
train_generators = [indefinite_generator(loader) for loader in self.train_loader]
iteration = 0
while iteration < max_loader_len * len(self.train_loader):
for generator in train_generators:
batch = next(generator)
self.total_iter += 1
num_seqs, num_frames = batch[0].shape[:2]
total_im_num = num_seqs * num_frames
if self.enable_memory_bank:
batch_features = self.forward_fix_embeddings(batch)
batch_embedding, embeddings, weights = self.retrieve_memory_bank(batch_features, batch)
bank_embedding_model_input = [batch_embedding, embeddings, weights]
else:
# bank_embedding_model_input = None
batch_features = self.forward_fix_embeddings(batch)
weights = {
"weights": torch.rand(1,10).to(batch_features.device),
"pick_idx": torch.randint(low=0, high=60, size=(1, 10)).to(batch_features.device)
}
bank_embedding_model_input = [batch_features[0], batch_features, weights]
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, which_data=self.dataset, is_training=True, bank_embedding=bank_embedding_model_input)
# self.model.backward()
self.optimizerFewShot.zero_grad()
self.model.total_loss.backward()
self.optimizerFewShot.step()
self.model.total_loss = 0.
# if self.cfgs.get('texture_way', None) is not None and self.cfgs.get('gan_tex', False):
if self.model.few_shot_gan_tex:
# the discriminator for local texture
disc_ret = self.discriminator_texture_step()
m.update(disc_ret)
if self.model.enable_disc and (self.model.mask_discriminator_iter[0] < self.total_iter) and (self.model.mask_discriminator_iter[1] > self.total_iter):
# the discriminator training
discriminator_loss_dict, grad_loss = self.model.discriminator_step()
m.update(
{
'mask_disc_loss_discriminator': discriminator_loss_dict['discriminator_loss'] - grad_loss,
'mask_disc_loss_discriminator_grad': grad_loss,
'mask_disc_loss_discriminator_rv': discriminator_loss_dict['discriminator_loss_rv'],
'mask_disc_loss_discriminator_iv': discriminator_loss_dict['discriminator_loss_iv'],
'mask_disc_loss_discriminator_gt': discriminator_loss_dict['discriminator_loss_gt']
}
)
self.logger.add_histogram('train_'+'discriminator_logits/random_view', discriminator_loss_dict['d_rv'], self.total_iter)
if discriminator_loss_dict['d_iv'] is not None:
self.logger.add_histogram('train_'+'discriminator_logits/input_view', discriminator_loss_dict['d_iv'], self.total_iter)
if discriminator_loss_dict['d_gt'] is not None:
self.logger.add_histogram('train_'+'discriminator_logits/gt_view', discriminator_loss_dict['d_gt'], self.total_iter)
metrics.update(m, total_im_num)
if self.rank == 0:
print(f"T{epoch:04}/{iteration:05}/{metrics}")
if self.iteration_save and self.total_iter % self.iteration_save_freq == 0:
self.save_checkpoint(epoch+1, total_iter=self.total_iter, optim=True, use_iter=True)
# ## reset optimizers
# if self.cfgs.get('opt_reset_every_iter', 0) > 0 and self.total_iter < self.cfgs.get('opt_reset_end_iter', 0):
# if self.total_iter % self.cfgs.get('opt_reset_every_iter', 0) == 0:
# self.model.reset_optimizers()
if misc.is_main_process() and self.use_logger:
if self.rank == 0 and self.total_iter % self.log_freq_losses == 0:
for name, loss in m.items():
label = f'cub_loss_train/{name[4:]}' if 'cub' in name else f'loss_train/{name}'
self.logger.add_scalar(label, loss, self.total_iter)
if self.rank == 0 and self.save_result_freq is not None and self.total_iter % self.save_result_freq == 0:
with torch.no_grad():
m = self.model.forward(batch, epoch=epoch, iter=iteration, total_iter=self.total_iter, save_results=False, save_dir=self.train_result_dir, which_data=self.dataset, is_training=False, bank_embedding=bank_embedding_model_input)
torch.cuda.empty_cache()
if self.total_iter % self.log_freq_images == 0:
with torch.no_grad():
if self.rank == 0 and self.log_train_images:
m = self.model.forward(batch, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='train_', is_training=False, bank_embedding=bank_embedding_model_input)
if self.fix_viz_batch:
print(f'fix_viz_batch:{self.fix_viz_batch}')
batch_val = self.viz_batch
else:
batch_val = next(self.viz_data_iterator)
if self.visualize_validation:
import time
vis_start = time.time()
# batch = next(self.viz_data_iterator)
# try:
# batch = next(self.viz_data_iterator)
# except: # iterator exhausted
# self.reset_viz_data_iterator()
# batch = next(self.viz_data_iterator)
if self.enable_memory_bank:
batch_features_val = self.forward_fix_embeddings(batch_val)
batch_embedding_val, embeddings_val, weights_val = self.retrieve_memory_bank(batch_features_val, batch_val)
bank_embedding_model_input_val = [batch_embedding_val, embeddings_val, weights_val]
else:
# bank_embedding_model_input_val = None
batch_features_val = self.forward_fix_embeddings(batch_val)
weights_val = {
"weights": torch.rand(1,10).to(batch_features_val.device),
"pick_idx": torch.randint(low=0, high=60, size=(1, 10)).to(batch_features_val.device)
}
bank_embedding_model_input_val = [batch_features_val[0], batch_features_val, weights_val]
if self.total_iter % self.save_result_freq == 0:
m = self.model.forward(batch_val, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, save_results=False, save_dir=self.train_result_dir, which_data=self.dataset, logger_prefix='val_', is_training=False, bank_embedding=bank_embedding_model_input_val)
torch.cuda.empty_cache()
vis_end = time.time()
print(f"vis time: {vis_end - vis_start}")
if self.test_loader is not None:
# unseen category test visualization
batch_test = next(self.viz_test_data_iterator)
if self.enable_memory_bank:
batch_features_test = self.forward_fix_embeddings(batch_test)
batch_embedding_test, embeddings_test, weights_test = self.retrieve_memory_bank(batch_features_test, batch_test)
bank_embedding_model_input_test = [batch_embedding_test, embeddings_test, weights_test]
else:
# bank_embedding_model_input_test = None
batch_features_test = self.forward_fix_embeddings(batch_test)
weights_test = {
"weights": torch.rand(1,10).to(batch_features_test.device),
"pick_idx": torch.randint(low=0, high=60, size=(1, 10)).to(batch_features_test.device)
}
bank_embedding_model_input_test = [batch_features_test[0], batch_features_test, weights_test]
m_test = self.model.forward(batch_test, epoch=epoch, iter=iteration, viz_logger=self.logger, total_iter=self.total_iter, which_data=self.dataset, logger_prefix='test_', is_training=False, bank_embedding=bank_embedding_model_input_test)
vis_test_end = time.time()
print(f"vis test time: {vis_test_end - vis_end}")
for name, loss in m_test.items():
if self.rank == 0:
self.logger.add_scalar(f'loss_test/{name}', loss, self.total_iter)
for name, loss in m.items():
if self.rank == 0:
self.logger.add_scalar(f'loss_val/{name}', loss, self.total_iter)
torch.cuda.empty_cache()
iteration += 1
self.model.scheduler_step()
return metrics