LINC-BIT's picture
Upload 1912 files
b84549f verified
from typing import List
from data.dataloader import build_dataloader
# from methods.elasticdnn.api.online_model import ElasticDNN_OnlineModel
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel
import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.vit import ElasticViTUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.gem.gem_el_bert import GEMAlg
import tqdm
from methods.feat_align.mmd import mmd_rbf
from experiments.utils.elasticfm_da import init_online_model, elasticfm_da
device = 'cuda'
app_name = 'secls'
sd_sparsity = 0.8
settings = {
'involve_fm': True
}
scenario = build_scenario(
source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB',
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610'],
target_datasets_order=['Liu3Domains-Computer', 'Liu3Domains-Router', 'Liu3Domains-Speaker',
'Ding9Domains-DiaperChamp', 'Ding9Domains-Norton', 'Ding9Domains-LinksysRouter',
'Ding9Domains-MicroMP3', 'Ding9Domains-Nokia6600', 'Ding9Domains-CanonPowerShotSD500',
'Ding9Domains-ipod', 'Ding9Domains-HitachiRouter', 'Ding9Domains-CanonS100',
'SemEval-Laptop', 'SemEval-Rest'] * 2 + ['Liu3Domains-Computer', 'Liu3Domains-Router'],
da_mode='close_set',
data_dirs={
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}'
for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB',
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']},
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing3Domains/asc/{k.split("-")[1]}'
for k in ['Liu3Domains-Computer', 'Liu3Domains-Router', 'Liu3Domains-Speaker']},
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing9Domains/asc/{k.split("-")[1]}'
for k in ['Ding9Domains-DiaperChamp', 'Ding9Domains-Norton', 'Ding9Domains-LinksysRouter',
'Ding9Domains-MicroMP3', 'Ding9Domains-Nokia6600', 'Ding9Domains-CanonPowerShotSD500',
'Ding9Domains-ipod', 'Ding9Domains-HitachiRouter', 'Ding9Domains-CanonS100']},
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/XuSemEval/asc/14/{k.split("-")[1].lower()}'
for k in ['SemEval-Laptop', 'SemEval-Rest']},
},
)
from experiments.elasticdnn.bert_base.online.se_cls_cl.model import ElasticDNN_SeClsOnlineModel
elasticfm_model = ElasticDNN_SeClsOnlineModel('secls', init_online_model(
'experiments/elasticdnn/bert_base/offline/fm_to_md/se_cls/results/secls_md_w_fbs_index.py/20230704/999994-085209-logic_verify/models/fm_best.pt',
'experiments/elasticdnn/bert_base/offline/fm_to_md/se_cls/results/secls_md_w_fbs_index.py/20230704/999994-085209-logic_verify/models/md_best.pt',
'cls', __file__
), device, {
'md_to_fm_alpha': 0.2,
'fm_to_md_alpha': 0.2
})
da_alg = GEMAlg
from experiments.elasticdnn.bert_base.online.se_cls_cl.model import SeClsOnlineGEMModel
da_model = SeClsOnlineGEMModel
da_alg_hyp = {
'train_batch_size': 16,
'val_batch_size': 64,
'num_workers': 8,
'optimizer': 'AdamW',
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
'scheduler': '',
'scheduler_args': {},
'num_iters': 100,
'val_freq': 20,
'n_memories': 16,
'n_inputs': 3 * 224 * 224,
'margin': 0.5,
'num_my_iters': 0,
'sd_sparsity': 0.7
}
elasticfm_da(
[app_name],
[scenario],
[elasticfm_model],
[da_alg],
[da_alg_hyp],
[da_model],
device,
settings,
__file__,
sys.argv[1]
)