|
from typing import List |
|
from data.dataloader import build_dataloader |
|
|
|
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel |
|
|
|
import torch |
|
import sys |
|
from torch import nn |
|
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel |
|
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg |
|
from methods.elasticdnn.model.base import ElasticDNNUtil |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util |
|
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util |
|
from methods.elasticdnn.model.vit import ElasticViTUtil |
|
from utils.common.file import ensure_dir |
|
from utils.dl.common.model import LayerActivation, get_module, get_parameter |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
from utils.dl.common.loss import CrossEntropyLossSoft |
|
import torch.nn.functional as F |
|
from utils.dl.common.env import create_tbwriter |
|
import os |
|
from utils.common.log import logger |
|
from utils.common.data_record import write_json |
|
|
|
from methods.gem.gem_el_bert import GEMAlg |
|
import tqdm |
|
from methods.feat_align.mmd import mmd_rbf |
|
from experiments.utils.elasticfm_da import init_online_model, elasticfm_da |
|
|
|
device = 'cuda' |
|
app_name = 'secls' |
|
sd_sparsity = 0.8 |
|
|
|
settings = { |
|
'involve_fm': True |
|
} |
|
|
|
scenario = build_scenario( |
|
source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', |
|
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610'], |
|
target_datasets_order=['Liu3Domains-Computer', 'Liu3Domains-Router', 'Liu3Domains-Speaker', |
|
'Ding9Domains-DiaperChamp', 'Ding9Domains-Norton', 'Ding9Domains-LinksysRouter', |
|
'Ding9Domains-MicroMP3', 'Ding9Domains-Nokia6600', 'Ding9Domains-CanonPowerShotSD500', |
|
'Ding9Domains-ipod', 'Ding9Domains-HitachiRouter', 'Ding9Domains-CanonS100', |
|
'SemEval-Laptop', 'SemEval-Rest'] * 2 + ['Liu3Domains-Computer', 'Liu3Domains-Router'], |
|
da_mode='close_set', |
|
data_dirs={ |
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' |
|
for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', |
|
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']}, |
|
|
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing3Domains/asc/{k.split("-")[1]}' |
|
for k in ['Liu3Domains-Computer', 'Liu3Domains-Router', 'Liu3Domains-Speaker']}, |
|
|
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing9Domains/asc/{k.split("-")[1]}' |
|
for k in ['Ding9Domains-DiaperChamp', 'Ding9Domains-Norton', 'Ding9Domains-LinksysRouter', |
|
'Ding9Domains-MicroMP3', 'Ding9Domains-Nokia6600', 'Ding9Domains-CanonPowerShotSD500', |
|
'Ding9Domains-ipod', 'Ding9Domains-HitachiRouter', 'Ding9Domains-CanonS100']}, |
|
|
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/XuSemEval/asc/14/{k.split("-")[1].lower()}' |
|
for k in ['SemEval-Laptop', 'SemEval-Rest']}, |
|
}, |
|
) |
|
|
|
from experiments.elasticdnn.bert_base.online.se_cls_cl.model import ElasticDNN_SeClsOnlineModel |
|
elasticfm_model = ElasticDNN_SeClsOnlineModel('secls', init_online_model( |
|
'experiments/elasticdnn/bert_base/offline/fm_to_md/se_cls/results/secls_md_w_fbs_index.py/20230704/999994-085209-logic_verify/models/fm_best.pt', |
|
'experiments/elasticdnn/bert_base/offline/fm_to_md/se_cls/results/secls_md_w_fbs_index.py/20230704/999994-085209-logic_verify/models/md_best.pt', |
|
'cls', __file__ |
|
), device, { |
|
'md_to_fm_alpha': 0.2, |
|
'fm_to_md_alpha': 0.2 |
|
}) |
|
|
|
da_alg = GEMAlg |
|
from experiments.elasticdnn.bert_base.online.se_cls_cl.model import SeClsOnlineGEMModel |
|
da_model = SeClsOnlineGEMModel |
|
da_alg_hyp = { |
|
'train_batch_size': 16, |
|
'val_batch_size': 64, |
|
'num_workers': 8, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 100, |
|
'val_freq': 20, |
|
'n_memories': 16, |
|
'n_inputs': 3 * 224 * 224, |
|
'margin': 0.5, |
|
'num_my_iters': 0, |
|
'sd_sparsity': 0.7 |
|
} |
|
|
|
|
|
elasticfm_da( |
|
[app_name], |
|
[scenario], |
|
[elasticfm_model], |
|
[da_alg], |
|
[da_alg_hyp], |
|
[da_model], |
|
device, |
|
settings, |
|
__file__, |
|
sys.argv[1] |
|
) |
|
|