|
from ..api.model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel |
|
from .user_impl import HuggingFaceModelAPI |
|
|
|
from typing import List |
|
from data.dataloader import build_dataloader |
|
|
|
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel |
|
|
|
import torch |
|
import sys |
|
from torch import nn |
|
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel |
|
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg |
|
from methods.elasticdnn.model.base import ElasticDNNUtil |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util |
|
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util |
|
from methods.elasticdnn.model.bert import ElasticBertUtil |
|
from utils.common.file import ensure_dir |
|
from utils.dl.common.model import LayerActivation, get_module, get_parameter, get_super_module |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
from utils.dl.common.loss import CrossEntropyLossSoft |
|
import torch.nn.functional as F |
|
from utils.dl.common.env import create_tbwriter |
|
import os |
|
from utils.common.log import logger |
|
from utils.common.data_record import write_json |
|
|
|
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg |
|
import tqdm |
|
from methods.feat_align.mmd import mmd_rbf |
|
from copy import deepcopy |
|
from typing import Optional, Union |
|
import torch |
|
from torch import nn |
|
from einops import rearrange, repeat |
|
from einops.layers.torch import Rearrange |
|
import tqdm |
|
from methods.elasticdnn.model.vit import Linear_WrappedWithFBS |
|
|
|
from utils.dl.common.model import get_model_device, get_model_size, set_module, get_module |
|
import torch |
|
from abc import abstractmethod |
|
|
|
|
|
class ElasticDNN_OfflineFMModel_for_HuggingFaceFM(ElasticDNN_OfflineFMModel): |
|
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI): |
|
self.hugging_face_api = hugging_face_api |
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
return self.hugging_face_api.get_accuracy(self.models_dict['main'], test_loader, self.device, *args, **kwargs) |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.hugging_face_api.infer(self.models_dict['main'], x, *args, **kwargs) |
|
|
|
def get_required_model_components(self) -> List[str]: |
|
return ['main'] |
|
|
|
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): |
|
res = FM_to_MD_HuggingFaceFM_Util() |
|
res.set_hugging_face_api(self.hugging_face_api) |
|
return res.init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], reducing_width_ratio, samples) |
|
|
|
def forward_to_get_task_loss(self, x, y, *args, **kwargs): |
|
return self.hugging_face_api.forward_to_get_task_loss(self.models_dict['main'], x, y) |
|
|
|
def get_feature_hook(self) -> LayerActivation: |
|
return self.hugging_face_api.get_feature_hook(self.models_dict['main'], self.device) |
|
|
|
def get_elastic_dnn_util(self) -> ElasticDNNUtil: |
|
res = ElasticHuggingFaceFMUtil() |
|
res.set_hugging_face_api(self.hugging_face_api) |
|
return res |
|
|
|
def get_lora_util(self) -> FMLoRA_Util: |
|
res = FMLoRA_HuggingFaceFM_Util() |
|
res.set_hugging_face_api(self.hugging_face_api) |
|
return res |
|
|
|
def get_task_head_params(self): |
|
return self.hugging_face_api.get_task_head_params(self.models_dict['main']) |
|
|
|
|
|
class ElasticDNN_OfflineMDModel_for_HuggingFaceFM(ElasticDNN_OfflineMDModel): |
|
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI): |
|
self.hugging_face_api = hugging_face_api |
|
|
|
def get_required_model_components(self) -> List[str]: |
|
return ['main'] |
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
return self.hugging_face_api.get_accuracy(self.models_dict['main'], test_loader, self.device, *args, **kwargs) |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.hugging_face_api.infer(self.models_dict['main'], x, *args, **kwargs) |
|
|
|
def forward_to_get_task_loss(self, x, y, *args, **kwargs): |
|
return self.hugging_face_api.forward_to_get_task_loss(self.models_dict['main'], x, y) |
|
|
|
def get_feature_hook(self) -> LayerActivation: |
|
return self.hugging_face_api.get_feature_hook(self.models_dict['main'], self.device) |
|
|
|
def get_distill_loss(self, student_output, teacher_output): |
|
return CrossEntropyLossSoft()(student_output, teacher_output) |
|
|
|
def get_matched_param_of_fm(self, self_param_name, fm: nn.Module): |
|
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]): |
|
return None |
|
|
|
p = get_parameter(self.models_dict['main'], self_param_name) |
|
if p.dim() == 0: |
|
return None |
|
elif p.dim() == 1: |
|
return None |
|
|
|
layers_name = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names() |
|
if len(layers_name[0]) == 4: |
|
|
|
|
|
qkv_names = [layer[0] for layer in layers_name] |
|
qkv_proj_names = [layer[1] for layer in layers_name] |
|
ff1_names = [layer[-2] for layer in layers_name] |
|
ff2_names = [layer[-1] for layer in layers_name] |
|
|
|
qkv_weight_names = [n + '.weight' for n in qkv_names] |
|
|
|
if self_param_name in qkv_weight_names: |
|
ss = self_param_name.split('.') |
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv' |
|
fm_qkv = get_module(fm, fm_qkv_name) |
|
|
|
fm_abs_name = '.'.join(ss[0: -1]) + '.abs' |
|
fm_abs = get_module(fm, fm_abs_name) |
|
|
|
|
|
|
|
return torch.cat([ |
|
fm_qkv.weight.data, |
|
torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) |
|
], dim=0) |
|
else: |
|
q_names = [layer[0] for layer in layers_name] |
|
k_names = [layer[1] for layer in layers_name] |
|
v_names = [layer[2] for layer in layers_name] |
|
qkv_proj_names = [layer[3] for layer in layers_name] |
|
ff1_names = [layer[-2] for layer in layers_name] |
|
ff2_names = [layer[-1] for layer in layers_name] |
|
|
|
qkv_weight_names = [n + '.weight' for n in q_names + k_names + v_names] |
|
|
|
if self_param_name in qkv_weight_names: |
|
|
|
ss = self_param_name.split('.') |
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv' |
|
fm_qkv = get_module(fm, fm_qkv_name) |
|
|
|
fm_abs_name = '.'.join(ss[0: -1]) + '.ab' |
|
fm_abs = get_module(fm, fm_abs_name) |
|
|
|
|
|
|
|
return torch.cat([ |
|
fm_qkv.weight.data, |
|
fm_abs[1].weight @ fm_abs[0].weight |
|
], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ff1_weight_names = [n + '.linear.weight' for n in ff1_names] |
|
ff2_weight_names = [n + '.weight' for n in ff2_names] |
|
|
|
if self_param_name in ff1_weight_names: |
|
fm_param_name = self_param_name.replace('.linear', '') |
|
return get_parameter(fm, fm_param_name) |
|
|
|
if self_param_name in ff2_weight_names: |
|
fm_param_name = self_param_name |
|
return get_parameter(fm, fm_param_name) |
|
|
|
return None |
|
|
|
|
|
class ElasticHuggingFaceFMUtil(ElasticDNNUtil): |
|
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI): |
|
self.hugging_face_api = hugging_face_api |
|
|
|
def convert_raw_dnn_to_master_dnn(self, raw_dnn: nn.Module, r: float, ignore_layers=[]): |
|
assert len(ignore_layers) == 0, 'not supported yet' |
|
|
|
raw_vit = deepcopy(raw_dnn) |
|
|
|
|
|
layers = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names() |
|
ff1_names = [layer[-2] for layer in layers] |
|
|
|
for name, module in raw_vit.named_modules(): |
|
|
|
|
|
if name in ff1_names: |
|
|
|
set_module(raw_vit, name, Linear_WrappedWithFBS(module, r)) |
|
|
|
return raw_vit |
|
|
|
def set_master_dnn_sparsity(self, master_dnn: nn.Module, sparsity: float): |
|
return super().set_master_dnn_sparsity(master_dnn, sparsity) |
|
|
|
def select_most_rep_sample(self, master_dnn: nn.Module, samples: torch.Tensor): |
|
|
|
|
|
res = {k: v[0: 1] for k, v in samples.items()} |
|
return res |
|
|
|
def extract_surrogate_dnn_via_samples(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False): |
|
sample = self.select_most_rep_sample(master_dnn, samples) |
|
|
|
|
|
|
|
master_dnn.eval() |
|
self.clear_cached_channel_attention_in_master_dnn(master_dnn) |
|
with torch.no_grad(): |
|
master_dnn_output = master_dnn(**sample) |
|
|
|
|
|
|
|
boosted_vit = deepcopy(master_dnn) |
|
|
|
def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k): |
|
assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions' |
|
|
|
res = channel_attn[0].nonzero(as_tuple=True)[0] |
|
return res |
|
|
|
unpruned_indexes_of_layers = {} |
|
|
|
layers_name = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names() |
|
ff1_names = [layer[-2] for layer in layers] |
|
ff2_names = [layer[-1] for layer in layers] |
|
|
|
for ff1_name, ff2_name in zip(ff1_names, ff2_names): |
|
ff_0 = get_module(boosted_vit, ff1_name) |
|
|
|
ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0] |
|
ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes]) |
|
new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None) |
|
new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes]) |
|
if ff_0.linear.bias is not None: |
|
new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes]) |
|
|
|
|
|
set_module(boosted_vit, ff1_name, |
|
nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes]))) |
|
|
|
ff_1 = get_module(boosted_vit, ff2_name) |
|
new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None) |
|
new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes]) |
|
if ff_1.bias is not None: |
|
new_ff_1.bias.data.copy_(ff_1.bias.data) |
|
|
|
set_module(boosted_vit, ff2_name, new_ff_1) |
|
|
|
unpruned_indexes_of_layers[f'{ff1_name}.0.weight'] = ff_0_unpruned_indexes |
|
|
|
surrogate_dnn = boosted_vit |
|
surrogate_dnn.eval() |
|
surrogate_dnn = surrogate_dnn.to(get_model_device(master_dnn)) |
|
|
|
with torch.no_grad(): |
|
surrogate_dnn_output = surrogate_dnn(**sample) |
|
|
|
output_diff = ((surrogate_dnn_output - master_dnn_output) ** 2).sum() |
|
|
|
logger.info(f'output diff of master and surrogate DNN: {output_diff}') |
|
logger.debug(f'example output of master/surrogate: {master_dnn_output.sum(0)[0: 10]}, {surrogate_dnn_output.sum(0)[0: 10]}') |
|
|
|
|
|
|
|
if return_detail: |
|
return boosted_vit, unpruned_indexes_of_layers |
|
|
|
return boosted_vit |
|
|
|
def extract_surrogate_dnn_via_samples_with_perf_test(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False): |
|
master_dnn_size = get_model_size(master_dnn, True) |
|
master_dnn_latency = self._get_model_latency(master_dnn, samples, 50, |
|
get_model_device(master_dnn), 50, False) |
|
|
|
res = self.extract_surrogate_dnn_via_samples(master_dnn, samples, return_detail) |
|
if not return_detail: |
|
surrogate_dnn = res |
|
else: |
|
surrogate_dnn, unpruned_indexes_of_layers = res |
|
surrogate_dnn_size = get_model_size(surrogate_dnn, True) |
|
surrogate_dnn_latency = self._get_model_latency(master_dnn, samples, 50, |
|
get_model_device(master_dnn), 50, False) |
|
|
|
logger.info(f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample) -> ' |
|
f'surrogate DNN ({surrogate_dnn_size:.3f}MB, {surrogate_dnn_latency:.4f}s/sample)\n' |
|
f'(model size: ↓ {(master_dnn_size / surrogate_dnn_size):.2f}x, ' |
|
f'latency: ↓ {(master_dnn_latency / surrogate_dnn_latency):.2f}x)') |
|
|
|
return res |
|
|
|
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, |
|
device: str, warmup_sample_num: int, return_detail=False): |
|
import time |
|
|
|
if isinstance(model_input_size, tuple): |
|
dummy_input = torch.rand(model_input_size).to(device) |
|
else: |
|
dummy_input = model_input_size |
|
|
|
model = model.to(device) |
|
model.eval() |
|
|
|
|
|
with torch.no_grad(): |
|
for _ in range(warmup_sample_num): |
|
model(**dummy_input) |
|
|
|
infer_time_list = [] |
|
|
|
if device == 'cuda' or 'cuda' in str(device): |
|
with torch.no_grad(): |
|
for _ in range(sample_num): |
|
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) |
|
s.record() |
|
model(**dummy_input) |
|
e.record() |
|
torch.cuda.synchronize() |
|
cur_model_infer_time = s.elapsed_time(e) / 1000. |
|
infer_time_list += [cur_model_infer_time] |
|
|
|
else: |
|
with torch.no_grad(): |
|
for _ in range(sample_num): |
|
start = time.time() |
|
model(**dummy_input) |
|
cur_model_infer_time = time.time() - start |
|
infer_time_list += [cur_model_infer_time] |
|
|
|
avg_infer_time = sum(infer_time_list) / sample_num |
|
|
|
if return_detail: |
|
return avg_infer_time, infer_time_list |
|
return avg_infer_time |
|
|
|
|
|
class FMLoRA_HuggingFaceFM_Util(FMLoRA_Util): |
|
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI): |
|
self.hugging_face_api = hugging_face_api |
|
|
|
@torch.no_grad() |
|
def add_lora_ab_to_fm(self, fm: nn.Module, ab_r: int, samples: dict): |
|
fm.eval() |
|
|
|
if isinstance(samples, dict): |
|
o1 = fm(**samples) |
|
else: |
|
o1 = fm(samples) |
|
|
|
layers_name = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names() |
|
if len(layers_name[0]) == 4: |
|
qkv_names = [layer[0] for layer in layers_name] |
|
|
|
from ..pipeline.offline.fm_lora.vit import ToQKV_WrappedWithLoRA |
|
for name, module in fm.named_modules(): |
|
if name in qkv_names: |
|
set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r)) |
|
else: |
|
qkv_names = [layer[0] for layer in layers_name] + [layer[1] for layer in layers_name] + [layer[2] for layer in layers_name] |
|
|
|
from ..pipeline.offline.fm_lora.bert import ToQKV_WrappedWithLoRA |
|
for name, module in fm.named_modules(): |
|
if name in qkv_names: |
|
set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r)) |
|
|
|
|
|
|
|
if isinstance(samples, dict): |
|
o2 = fm(**samples) |
|
else: |
|
o2 = fm(samples) |
|
|
|
if isinstance(o1, tuple): |
|
o1 = o1[-1] |
|
o2 = o2[-1] |
|
output_diff = ((o1 - o2) ** 2).sum() |
|
assert output_diff < 1e-5 |
|
|
|
return fm |
|
|
|
@torch.no_grad() |
|
def absorb_lora_and_recover_net_structure(self, fm: nn.Module, samples: dict): |
|
fm.eval() |
|
|
|
if isinstance(samples, dict): |
|
o1 = fm(**samples) |
|
else: |
|
o1 = fm(samples) |
|
|
|
from ..pipeline.offline.fm_lora.vit import ToQKV_WrappedWithLoRA as ToQKV_WrappedWithLoRA1 |
|
from ..pipeline.offline.fm_lora.bert import ToQKV_WrappedWithLoRA as ToQKV_WrappedWithLoRA2 |
|
|
|
for name, module in fm.named_modules(): |
|
if isinstance(module, ToQKV_WrappedWithLoRA1): |
|
|
|
qkv = module.qkv |
|
fm_abs = module.abs |
|
|
|
fm_abs_weight = torch.cat([_abs[1].weight @ _abs[0].weight for _abs in fm_abs], dim=0) |
|
qkv.weight.add_(fm_abs_weight) |
|
|
|
set_module(fm, name, qkv) |
|
|
|
elif isinstance(module, ToQKV_WrappedWithLoRA2): |
|
|
|
fc = module.fc |
|
ab = module.ab |
|
|
|
fc.weight.add_(ab[1].weight @ ab[0].weight) |
|
|
|
set_module(fm, name, fc) |
|
|
|
|
|
if isinstance(samples, dict): |
|
o2 = fm(**samples) |
|
else: |
|
o2 = fm(samples) |
|
|
|
if isinstance(o1, tuple): |
|
o1 = o1[-1] |
|
o2 = o2[-1] |
|
output_diff = ((o1 - o2) ** 2).sum() |
|
assert output_diff < 1e-6, output_diff |
|
|
|
return fm |
|
|
|
|
|
class FM_to_MD_HuggingFaceFM_Util(FM_to_MD_Util): |
|
def set_hugging_face_api(self, hugging_face_api: HuggingFaceModelAPI): |
|
self.hugging_face_api = hugging_face_api |
|
|
|
def init_md_from_fm_by_reducing_width(self, fm: nn.Module, reducing_width_ratio: int) -> nn.Module: |
|
fm_vit = deepcopy(fm) |
|
|
|
|
|
|
|
|
|
def _f(n): |
|
return int(n // reducing_width_ratio) |
|
|
|
|
|
|
|
|
|
def l1_max_indexes(p: torch.Tensor, dim=0): |
|
assert dim in [0, 1] |
|
assert p.dim() in [1, 2, 4] |
|
|
|
if dim == 1: |
|
p = p.T |
|
|
|
p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1) |
|
n = p.size(0) |
|
return p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)].sort()[0] |
|
|
|
layers_name = self.hugging_face_api.get_qkv_proj_ff1_ff2_layer_names() |
|
if len(layers_name[0]) == 6: |
|
q_names = [layer[0] for layer in layers_name] |
|
k_names = [layer[1] for layer in layers_name] |
|
v_names = [layer[2] for layer in layers_name] |
|
qkv_proj_names = [layer[3] for layer in layers_name] |
|
ff1_names = [layer[-2] for layer in layers_name] |
|
ff2_names = [layer[-1] for layer in layers_name] |
|
|
|
for q_name, k_name, v_name, qkv_proj_name, ff1_name, ff2_name in zip(q_names, k_names, v_names, qkv_proj_names, ff1_names, ff2_names): |
|
for k in [q_name, k_name, v_name]: |
|
qkv = get_module(fm_vit, k) |
|
|
|
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), |
|
qkv.bias is not None, qkv.weight.device) |
|
indexes = l1_max_indexes(qkv.weight.data, 0) |
|
|
|
new_qkv.weight.data.copy_(qkv.weight.data[indexes]) |
|
if qkv.bias is not None: |
|
new_qkv.bias.data.copy_(qkv.bias.data[indexes]) |
|
set_module(fm_vit, k, new_qkv) |
|
|
|
proj = get_module(fm_vit, qkv_proj_name) |
|
new_proj = nn.Linear(_f(proj.in_features), proj.out_features, |
|
proj.bias is not None, proj.weight.device) |
|
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)]) |
|
if proj.bias is not None: |
|
new_proj.bias.data.copy_(proj.bias.data) |
|
set_module(fm_vit, qkv_proj_name, new_proj) |
|
|
|
fc1 = get_module(fm_vit, ff1_name) |
|
new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), |
|
fc1.bias is not None, fc1.weight.device) |
|
indexes = l1_max_indexes(fc1.weight.data, 0) |
|
new_fc1.weight.data.copy_(fc1.weight.data[indexes]) |
|
if fc1.bias is not None: |
|
new_fc1.bias.data.copy_(fc1.bias.data[indexes]) |
|
set_module(fm_vit, ff1_name, new_fc1) |
|
|
|
fc2 = get_module(fm_vit, ff2_name) |
|
new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, |
|
fc2.bias is not None, fc2.weight.device) |
|
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)]) |
|
if fc2.bias is not None: |
|
new_fc2.bias.data.copy_(fc2.bias.data) |
|
set_module(fm_vit, ff2_name, new_fc2) |
|
|
|
if len(layers_name[0]) == 4: |
|
qkv_names = [layer[0] for layer in layers_name] |
|
qkv_proj_names = [layer[1] for layer in layers_name] |
|
ff1_names = [layer[-2] for layer in layers_name] |
|
ff2_names = [layer[-1] for layer in layers_name] |
|
|
|
for qkv_name, qkv_proj_name, ff1_name, ff2_name in zip(qkv_names, qkv_proj_names, ff1_names, ff2_names): |
|
qkv = get_module(fm_vit, qkv_name) |
|
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features), |
|
qkv.bias is not None, qkv.weight.device) |
|
indexes = l1_max_indexes(qkv.weight.data, 0) |
|
|
|
new_qkv.weight.data.copy_(qkv.weight.data[indexes]) |
|
if qkv.bias is not None: |
|
new_qkv.bias.data.copy_(qkv.bias.data[indexes]) |
|
set_module(fm_vit, qkv_name, new_qkv) |
|
|
|
proj = get_module(fm_vit, qkv_proj_name) |
|
new_proj = nn.Linear(_f(proj.in_features), proj.out_features, |
|
proj.bias is not None, proj.weight.device) |
|
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)]) |
|
if proj.bias is not None: |
|
new_proj.bias.data.copy_(proj.bias.data) |
|
set_module(fm_vit, qkv_proj_name, new_proj) |
|
|
|
fc1 = get_module(fm_vit, ff1_name) |
|
new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features), |
|
fc1.bias is not None, fc1.weight.device) |
|
indexes = l1_max_indexes(fc1.weight.data, 0) |
|
new_fc1.weight.data.copy_(fc1.weight.data[indexes]) |
|
if fc1.bias is not None: |
|
new_fc1.bias.data.copy_(fc1.bias.data[indexes]) |
|
set_module(fm_vit, ff1_name, new_fc1) |
|
|
|
fc2 = get_module(fm_vit, ff2_name) |
|
new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features, |
|
fc2.bias is not None, fc2.weight.device) |
|
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)]) |
|
if fc2.bias is not None: |
|
new_fc2.bias.data.copy_(fc2.bias.data) |
|
set_module(fm_vit, ff2_name, new_fc2) |
|
|
|
return fm_vit |
|
|
|
def init_md_from_fm_by_reducing_width_with_perf_test(self, fm: nn.Module, reducing_width_ratio: int, |
|
samples: torch.Tensor) -> nn.Module: |
|
fm_size = get_model_size(fm, True) |
|
fm_latency = self._get_model_latency(fm, samples, 20, |
|
get_model_device(fm), 20, False) |
|
|
|
master_dnn = self.init_md_from_fm_by_reducing_width(fm, reducing_width_ratio) |
|
master_dnn_size = get_model_size(master_dnn, True) |
|
logger.debug(f'inited master DNN: {master_dnn}') |
|
master_dnn_latency = self._get_model_latency(master_dnn, samples, 20, |
|
get_model_device(master_dnn), 20, False) |
|
|
|
logger.info(f'init master DNN (w/o FBS yet) by reducing foundation model\'s width (by {reducing_width_ratio:d}x)') |
|
logger.info(f'foundation model ({fm_size:.3f}MB, {fm_latency:.4f}s/sample) -> ' |
|
f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample)\n' |
|
f'(model size: ↓ {(fm_size / master_dnn_size):.2f}x, ' |
|
f'latency: ↓ {(fm_latency / master_dnn_latency):.2f}x)') |
|
|
|
return master_dnn |
|
|
|
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int, |
|
device: str, warmup_sample_num: int, return_detail=False): |
|
import time |
|
|
|
if isinstance(model_input_size, tuple): |
|
dummy_input = torch.rand(model_input_size).to(device) |
|
else: |
|
dummy_input = model_input_size |
|
|
|
model = model.to(device) |
|
model.eval() |
|
|
|
|
|
with torch.no_grad(): |
|
for _ in range(warmup_sample_num): |
|
if isinstance(dummy_input, dict): |
|
model(**dummy_input) |
|
else: |
|
model(dummy_input) |
|
|
|
infer_time_list = [] |
|
|
|
if device == 'cuda' or 'cuda' in str(device): |
|
with torch.no_grad(): |
|
for _ in range(sample_num): |
|
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True) |
|
s.record() |
|
|
|
if isinstance(dummy_input, dict): |
|
model(**dummy_input) |
|
else: |
|
model(dummy_input) |
|
|
|
e.record() |
|
torch.cuda.synchronize() |
|
cur_model_infer_time = s.elapsed_time(e) / 1000. |
|
infer_time_list += [cur_model_infer_time] |
|
|
|
else: |
|
with torch.no_grad(): |
|
for _ in range(sample_num): |
|
start = time.time() |
|
|
|
if isinstance(dummy_input, dict): |
|
model(**dummy_input) |
|
else: |
|
model(dummy_input) |
|
|
|
cur_model_infer_time = time.time() - start |
|
infer_time_list += [cur_model_infer_time] |
|
|
|
avg_infer_time = sum(infer_time_list) / sample_num |
|
|
|
if return_detail: |
|
return avg_infer_time, infer_time_list |
|
return avg_infer_time |