Spaces:
Running
Running
import os | |
gpt_neo_series_id = '1.3B_ckpt' | |
os.environ['gpt_neo_series_id'] = gpt_neo_series_id | |
os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
# os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1' | |
import torch | |
from methods.elasticdnn.api.model import ElasticDNN_OfflineSenClsFMModel, ElasticDNN_OfflineSenClsMDModel | |
from methods.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg | |
from methods.elasticdnn.model.base import ElasticDNNUtil | |
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util | |
from gpt_neo import FMLoRA_GPT_Util, ElasticDNN_OfflineTextGenFMModel, collate_fn | |
# from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util | |
# from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util | |
# from methods.elasticdnn.model.vit import ElasticViTUtil | |
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module | |
from utils.common.exp import save_models_dict_for_init, get_res_save_dir | |
from data import build_gen_scenario | |
from utils.common.log import logger | |
import torch.nn.functional as F | |
import sys | |
class ElasticDNN_GPT_OfflineTextGenFMModel(ElasticDNN_OfflineTextGenFMModel): | |
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): | |
# return FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'], | |
# reducing_width_ratio, samples) | |
raise NotImplementedError | |
def get_feature_hook(self) -> LayerActivation: | |
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) | |
def get_elastic_dnn_util(self) -> ElasticDNNUtil: | |
raise NotImplementedError | |
def forward_to_get_task_loss(self, x, y): | |
self.to_train_mode() | |
return self.infer(x) | |
def get_lora_util(self) -> FMLoRA_Util: | |
return FMLoRA_GPT_Util() | |
def get_task_head_params(self): | |
head = get_module(self.models_dict['main'], 'model.lm_head') | |
params_name = {k for k, v in head.named_parameters()} | |
logger.info(f'task head params: {params_name}') | |
return list(head.parameters()) | |
class ElasticDNN_ViT_OfflineDetMDModel(ElasticDNN_OfflineSenClsMDModel): | |
def get_feature_hook(self) -> LayerActivation: | |
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device) | |
def forward_to_get_task_loss(self, x, y, *args, **kwargs): | |
self.to_train_mode() | |
return F.cross_entropy(self.infer(x), y) | |
if __name__ == '__main__': | |
from utils.dl.common.env import set_random_seed | |
set_random_seed(1) | |
torch.cuda.set_device(0) | |
# torch.cuda.device_count() | |
# runned | |
# gpt_neo_series_id = '125m_ckpt' | |
# gpt_neo_series_id = '1.3B_ckpt' | |
os.environ['gpt_neo_series_id'] = gpt_neo_series_id | |
scenario = build_gen_scenario( | |
source_datasets_name=['No_robots'], | |
target_datasets_order=['No_robots'] * 1, # TODO | |
da_mode='close_set', | |
data_dirs={ | |
'No_robots': f'/data/zql/datasets/no_robots', | |
}, | |
) | |
# 2. init model | |
device = 'cuda' | |
from gpt_neo import GPTNeoForNLG, getTokenizer | |
tokenizer = getTokenizer() | |
model = GPTNeoForNLG(gpt_neo_series_id) | |
model.model.resize_token_embeddings(len(tokenizer)) | |
model.model.tie_weights() | |
fm_models_dict_path = save_models_dict_for_init({ | |
'main': model | |
}, __file__, 'gpt_neo_pretrained_text_gen') | |
fm_model = ElasticDNN_GPT_OfflineTextGenFMModel('fm', fm_models_dict_path, device) | |
# 3. init alg | |
models = { | |
'fm': fm_model | |
} | |
fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, "results")) | |
# 4. run alg | |
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup | |
fm_lora_alg.run(scenario, hyps={ | |
'launch_tbboard': False, | |
'samples_size': {'input_ids': torch.tensor([[ 101, 5672, 2033, 2011, 2151, 3793, 2017, 1005, 1040, 2066, 1012, 102]]).to(device), | |
'token_type_ids': torch.tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]).to(device), | |
'attention_mask': torch.tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(device), 'return_dict': False}, | |
'ab_r': 8, | |
'train_batch_size': 4, | |
'val_batch_size': 1, | |
'num_workers': 4, | |
'optimizer': 'AdamW', | |
'optimizer_args': {'lr': 5e-5, 'betas': [0.9, 0.999]}, | |
'scheduler': 'LambdaLR', | |
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 80000)}, | |
'num_iters': 80000, | |
'val_freq': 1000, | |
# 'fm_lora_ckpt_path': 'experiments/elasticdnn/vit_b_16/offline/fm_lora/cls/results/cls.py/20230607/999995-234355-trial/models/fm_best.pt' | |
}, collate_fn=collate_fn) |