File size: 31,459 Bytes
e137e27
 
005657d
 
 
 
 
 
 
 
 
 
e137e27
 
 
 
 
8262fca
e137e27
 
 
 
005657d
87a6313
e137e27
a4dc57a
 
e137e27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e384d00
 
 
 
005657d
e384d00
 
 
 
 
 
 
 
ddc7526
e384d00
e74bc72
e384d00
 
 
 
 
 
 
e74bc72
 
 
 
 
 
e384d00
 
ddc7526
e384d00
 
 
 
4cc0103
ddc7526
02247f7
e384d00
 
e74bc72
 
 
 
 
 
85b59b6
 
 
 
 
 
 
 
 
 
 
 
e384d00
 
ddc7526
 
e384d00
 
 
 
ddc7526
e384d00
 
 
 
 
ddc7526
 
e384d00
 
 
 
ddc7526
 
e384d00
 
85b59b6
 
 
 
 
 
e384d00
 
ddc7526
 
e384d00
 
 
 
ddc7526
 
e384d00
 
5b6d908
 
 
 
 
 
005657d
e384d00
 
005657d
 
35a3f42
 
5a77be1
85b59b6
5a77be1
35a3f42
 
 
 
005657d
 
 
 
 
 
 
 
 
 
 
 
 
e137e27
 
e384d00
 
e137e27
 
 
9a127b5
e137e27
 
 
 
 
 
 
 
 
e384d00
 
 
 
 
 
 
 
e137e27
 
 
 
 
43e1d29
 
45ddd25
43e1d29
e137e27
 
 
 
 
5d3f993
09bef6a
e137e27
 
 
 
a4dc57a
09bef6a
e137e27
 
 
 
b2b380b
09bef6a
e137e27
 
 
 
 
fac35b0
4cc0103
09bef6a
fac35b0
e137e27
db08107
 
 
 
 
09bef6a
db08107
 
 
 
 
09bef6a
db08107
 
 
 
 
09bef6a
db08107
 
 
 
 
09bef6a
db08107
 
 
 
 
09bef6a
db08107
 
 
 
e137e27
fac35b0
4cc0103
09bef6a
fac35b0
e137e27
48d8ec3
 
 
 
 
09bef6a
48d8ec3
 
 
 
 
09bef6a
48d8ec3
 
 
 
 
09bef6a
48d8ec3
 
 
 
e137e27
fac35b0
9a127b5
09bef6a
ec2b3ce
 
fd8de54
 
 
 
 
09bef6a
fd8de54
 
 
 
a4dc57a
09bef6a
fd8de54
 
 
 
 
09bef6a
fd8de54
 
 
 
 
09bef6a
fd8de54
 
 
 
 
09bef6a
fd8de54
 
 
 
 
09bef6a
fd8de54
 
 
 
0595e24
09bef6a
fd8de54
 
 
 
0595e24
09bef6a
fd8de54
 
0595e24
 
 
 
 
 
fd8de54
 
ec2b3ce
 
d673af7
09bef6a
fac35b0
e137e27
ea708b9
 
 
 
 
09bef6a
ea708b9
 
 
 
a4dc57a
09bef6a
ea708b9
 
 
 
 
09bef6a
ea708b9
 
a711d2f
 
 
 
 
 
ea708b9
 
e137e27
 
 
 
 
09bef6a
45ddd25
09bef6a
 
e137e27
35a3f42
 
 
 
 
 
005657d
e137e27
 
 
8061116
 
 
adcd5e6
8061116
 
 
 
 
 
 
 
 
 
 
 
 
adcd5e6
8061116
 
 
 
 
 
 
 
 
 
 
 
 
adcd5e6
8061116
 
 
 
 
 
 
 
 
 
 
 
 
adcd5e6
8061116
 
 
 
 
 
 
 
 
 
 
 
adcd5e6
 
8061116
 
 
 
 
 
 
 
 
 
 
 
 
adcd5e6
8061116
 
 
 
 
 
 
 
 
 
 
 
 
adcd5e6
8061116
4e6ee79
8061116
 
 
 
 
 
 
 
 
 
adcd5e6
 
8061116
4e6ee79
8061116
 
 
e384d00
8061116
 
 
 
 
 
 
adcd5e6
8061116
 
 
 
 
 
 
 
 
 
 
 
 
e384d00
8061116
 
3f67a06
 
e384d00
861154a
3f67a06
 
e384d00
 
 
8061116
5614f01
 
 
 
 
 
dbbb9f4
58a867d
 
8061116
 
 
 
dbbb9f4
5614f01
 
82df62a
5614f01
8061116
 
8580754
fac35b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8580754
12ce41f
fac35b0
 
 
 
 
 
 
2ecaabf
fac35b0
2ecaabf
fac35b0
 
 
 
 
 
b6d74c9
 
 
140edc3
8580754
 
 
fac35b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12ce41f
fac35b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbbb9f4
 
 
 
 
fac35b0
 
b6d74c9
 
a1001c2
140edc3
dbbb9f4
 
8580754
 
fac35b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89cfcec
fac35b0
56335b8
 
fac35b0
 
 
 
 
 
56335b8
fac35b0
 
89cfcec
fac35b0
56335b8
 
fac35b0
 
56335b8
fac35b0
 
 
56335b8
fac35b0
7ab95df
fac35b0
 
 
 
 
56335b8
fac35b0
 
56335b8
fac35b0
 
 
 
 
12ce41f
e3b3325
 
 
 
 
 
 
 
 
 
f754e2b
 
d6d69e3
f754e2b
 
 
 
e3b3325
 
0e10a03
a1001c2
d6d69e3
e384d00
d6d69e3
2d4ad39
 
 
e384d00
8580754
 
 
 
 
 
 
4cc0103
 
 
 
 
0595e24
fac35b0
a4dc57a
fac35b0
9a127b5
e384d00
 
 
 
ac7d8cf
4cc0103
e384d00
 
 
0595e24
fac35b0
9cbd894
9345dee
9aaf568
 
9cbd894
09bef6a
e137e27
5025d3d
ac7d8cf
4cc0103
0595e24
5025d3d
8061116
e384d00
 
3d1994e
4cc0103
3d1994e
e384d00
0595e24
4cc0103
 
e384d00
 
 
09bef6a
5025d3d
 
4cc0103
5025d3d
4cc0103
5025d3d
 
3d1994e
5025d3d
 
4cc0103
 
5025d3d
117a05e
5025d3d
4cc0103
5025d3d
e384d00
 
3d1994e
e384d00
09bef6a
5025d3d
e137e27
 
 
005657d
87a6313
 
e137e27
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
from fasthtml.common import *
from fasthtml.components import *
from fasthtml.components import (
    D_title,
    D_article,
    D_front_matter,
    D_contents,
    D_byline,
    D_bibliography,
    D_appendix,
    D_cite,
)
from plotly import graph_objects as go
from fh_plotly import plotly2fasthtml
import pandas as pd
import json
from rich import print
import overview
import curated
import web
import common
import results
from pybtex.database import parse_file
import data_viewer

from eval_result_figures import all_eval_res_figs


app, rt = fast_app(
    debug=True,
    pico=False,
    hdrs=(
        Meta(charset="UTF-8"),
        Meta(name="viewport", content="width=device-width, initial-scale=1.0"),
        Script(src="https://distill.pub/template.v2.js"),
        Script(src="https://unpkg.com/htmx.org@next/dist/htmx.min.js"),
        Script(src="https://cdn.plot.ly/plotly-latest.min.js"),
        Link(rel="stylesheet", href="style.css"),
        MarkdownJS(),
    ),
)


front_matter = {
    "title": "TxT360",
    "description": "A globally deduplicated dataset for LLM pretraining",
    "published": "October 7, 2024",
    "authors": [
        {
            "author": "Liping Tang",
            "authorURL": "https://huggingface.co/Liping",
            "affiliation": "MBZUAI",
            "affiliationURL": "LLM360.ai",
        },
        {
            "author": "Nikhil Ranjan",
            "authorURL": "https://huggingface.co/nikhilranjan",
            "affiliation": "MBZUAI",
            "affiliationURL": "LLM360.ai",
        },
        {
            "author": "Omkar Pangarkar",
            "authorURL": "https://huggingface.co/omkarenator",
            "affiliation": "Petuum, Inc.",
            "affiliationURL": "",
        },
        {
            "author": "Xuezhi Liang",
            "authorURL": "",
            "affiliation": "MBZUAI",
            "affiliationURL": "",
        },
        {
            "author": "Zhen Wang",
            "authorURL": "",
            "affiliation": "MBZUAI",
            "affiliationURL": "",
        },
        {
            "author": "Li An",
            "authorURL": "https://huggingface.co/an1118",
            "affiliation": "UCSB",
            "affiliationURL": "",
        },
        {
            "author": "Bhaskar Rao",
            "authorURL": "",
            "affiliation": "MBZUAI",
            "affiliationURL": "",
        },
        {
            "author": "Linghao Jin",
            "authorURL": "https://sites.google.com/usc.edu/linghao-jin",
            "affiliation": "USC",
            "affiliationURL": "",
        },
        {
            "author": "Huijuan Wang",
            "authorURL": "https://sites.google.com/usc.edu/huijuanwang",
            "affiliation": "USC",
            "affiliationURL": "",
        },        
        {
            "author": "Zhoujun Cheng",
            "authorURL": "https://huggingface.co/zhoujun",
            "affiliation": "UCSD",
            "affiliationURL": "",
        },
        {
            "author": "Suqi Sun",
            "authorURL": "https://huggingface.co/mylibrar",
            "affiliation": "Petuum, Inc.",
            "affiliationURL": "",
        },
        {
            "author": "Cun Mu",
            "authorURL": "https://huggingface.co/CarisMu",
            "affiliation": "MBZUAI",
            "affiliationURL": "",
        },
        {
            "author": "Victor Miller",
            "authorURL": "https://huggingface.co/vamiller12",
            "affiliation": "Petuum, Inc.",
            "affiliationURL": "",
        },
        {
            "author": "Xuezhe Ma",
            "authorURL": "https://xuezhemax.github.io/",
            "affiliation": "USC",
            "affiliationURL": "",
        },
        {
            "author": "Yue Peng",
            "authorURL": "https://huggingface.co/Dreamever",
            "affiliation": "MBZUAI",
            "affiliationURL": "",
        },
        {
            "author": "Zhengzhong Liu",
            "authorURL": "https://huggingface.co/hunterhector",
            "affiliation": "Petuum, Inc. / MBZUAI ",
            "affiliationURL": "",
        },
        {
            "author": "Eric P. Xing",
            "authorURL": "",
            "affiliation": "MBZUAI",
            "affiliationURL": "https://www.mbzuai.ac.ae/ & https://www.cs.cmu.edu/",
        },
    ],
    "katex": {"delimiters": [{"left": "$$", "right": "$$", "display": "false"}]},
}


citation_long = """
@misc{txt360data2024,
      title={TxT360: A Top-Quality LLM Pre-training Dataset Requires the Perfect Blend}, 
      author={Liping Tang, Nikhil Ranjan, Omkar Pangarkar, Xuezhi Liang, Zhen Wang, Li An, Bhaskar Rao, Linghao Jin, Huijuan Wang, Zhoujun Cheng, Suqi Sun, Cun Mu, Victor Miller, Xuezhe Ma, Yue Peng, Zhengzhong Liu, Eric P. Xing},
      year={2024}
}
"""


def read_bibs():
    bib_data = parse_file("bibliography.bib")
    cits = []
    for key in bib_data.entries.keys():
        cits.append(D_cite(bibtex_key=key))
    return cits


@app.get("/bibliography.bib")
def get():
    return FileResponse("bibliography.bib")


@app.get("/")
def main():
    from fasthtml.xtend import Script

    return Div(
        D_title(
            H1(
                "TxT360: A Top-Quality LLM Pre-training Dataset Requires the Perfect Blend",
                cls="l-body",
                style="text-align: center;",
            ),
            Div(
                Img(src="images/llm360_logo.png"),
                id="title-plot",
                cls="main-plot-container l-page",
            ),
        ),
        D_byline(),
        D_front_matter(
            Script(
                json.dumps(front_matter),
                id="distill-front-matter",
                type="text/json",
            )
        ),
        D_article(
            D_contents(
                Nav(
                    H3("Table of Contents"),
                    Div(
                        A(
                            "TxT360",
                            href="#section11",
                        )
                    ),
                    Div(
                        Ul(
                            Li(
                                A(
                                    "About TxT360",
                                    href="#section11",
                                )
                            ),
                            Li(
                                A(
                                    "Why TxT360",
                                    href="#section12",
                                )
                            ),
                            Li(
                                A(
                                    "Generalizable Approach to Data Processing",
                                    href="#section13",
                                )
                            ),
                        ),
                    ),
                    Div(
                        A(
                            "Common Crawl Data",
                            href="#section21",
                        )
                    ),
                    Div(
                        Ul(
                            Li(
                                A(
                                    "Common Crawl Snapshot Processing",
                                    href="#section21",
                                )
                            ),
                            Li(
                                A(
                                    "Common Crawl Data Processing Summary",
                                    href="#section22",
                                )
                            ),
                            Li(
                                A(
                                    "Document Preparation",
                                    href="#section23",
                                )
                            ),
                            Li(
                                A(
                                    "Line-Level Removal",
                                    href="#section24",
                                )
                            ),
                            Li(
                                A(
                                    "Document-Level Filtering",
                                    href="#section25",
                                )
                            ),
                        ),
                    ),
                    Div(
                        A(
                            "Curated Sources",
                            href="#section31",
                        )
                    ),
                    Div(
                        Ul(
                            Li(
                                A(
                                    "Curated Sources in TxT360",
                                    href="#section31",
                                )
                            ),
                            Li(
                                A(
                                    "Filtering Steps and Definitions",
                                    href="#section32",
                                )
                            ),
                            Li(
                                A(
                                    "Filtering Discussion on All Curated Sources",
                                    href="#section33",
                                )
                            ),
                        ),
                    ),
                    Div(
                        A(
                            "Shared Processing Steps",
                            href="#section41",
                        )
                    ),
                    Div(
                        Ul(
                            Li(
                                A(
                                    "Overview",
                                    href="#section41",
                                )
                            ),
                            Li(
                                A(
                                    "Why Global Deduplication",
                                    href="#section42",
                                )
                            ),
                            Li(
                                A(
                                    "MinHash Generation",
                                    href="#section43",
                                )
                            ),
                            Li(
                                A(
                                    "Matching Pairs Generation",
                                    href="#section44",
                                )
                            ),
                            Li(
                                A(
                                    "Finding Duplicate Pairs",
                                    href="#section45",
                                )
                            ),
                            Li(
                                A(
                                    "Finding Connected Components using MapReduce",
                                    href="#section46",
                                )
                            ),
                            Li(
                                A(
                                    "Analysis of Near-Duplicate Clusters",
                                    href="#section47",
                                )
                            ),
                            Li(
                                A(
                                    "Personally Identifiable Information Removal",
                                    href="#section48",
                                )
                            ),
                            Li(
                                A(
                                    "Normalization Form C",
                                    href="#section49",
                                )
                            ),
                        ),
                    ),
                    Div(
                        A(
                            "TxT360 Studies",
                            href="#section51",
                        ),
                    ),
                    Div(
                        Ul(
                            Li(
                                A(
                                    "Overview",
                                    href="#section51",
                                )
                            ),
                            Li(
                                A(
                                    "A Simple Data Mix Creates a Good Learning Curve",
                                    href="#section52",
                                )
                            ),
                            Li(
                                A(
                                    "Perplexity Analysis",
                                    href="#section53",
                                )
                            ),
                            Li(
                                A(
                                    "Topic Analysis",
                                    href="#section55",
                                )
                            )
                        ),
                    ),
                    role="navigation",
                    cls="l-text figcaption",
                ),
            ),
            intro(),
            web.web_data(),
            curated.curated(),
            common.common_steps(),
            results.results(),
        ),
        D_appendix(
            D_bibliography(src="bibliography.bib"),
            H3("Citation"),
            P("For attribution in academic contexts, please cite this work as"),
            Pre(citation_long, cls="citation long"),
        ),
        Div(*read_bibs(), style="display: none;"),
    )


new_dataset_comparison1 = pd.DataFrame(
    {
        "Data Source": [
            "CommonCrawl Snapshots",
            "Papers",
            "Wikipedia",
            "FreeLaw",
            "DM Math",
            "USPTO",
            "PG-19",
            "HackerNews",
            "Ubuntu IRC",
            "EuroParl",
            "StackExchange",
            "Code",
        ],
        "TxT360": [
            "99",
            "5 Sources",
            "310+ Languages",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
            "**",
        ],
        "FineWeb": [
            "96",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
        ],
        "RefinedWeb": [
            "90",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
        ],
        "PedPajamaV2": [
            "84",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
        ],
        "C4": [
            "1",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
        ],
        "Dolma": [
            "24",
            "1 Source",
            "Included",
            "-",
            "-",
            "-",
            "Included",
            "-",
            "-",
            "-",
            "-",
            "Included",
        ],
        "RedPajamaV1": [
            "5",
            "1 Source",
            "Included",
            "",
            " ",
            "",
            "Included",
            "-",
            "-",
            "-",
            "Included",
            "Included",
        ],
        "The Pile": [
            "0.6% of 74",
            "4 Sources",
            "English Only",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
            "Included",
        ],
    }
)

styled_table = (
    new_dataset_comparison1.style.applymap(
        lambda _: "background-color: #E1EEDB",  # Green background for col 1
        subset=pd.IndexSlice[:, "TxT360"],
    )
    .applymap(
        lambda _: "background-color: white",  # White background for all other columns
        subset=pd.IndexSlice[
            :, new_dataset_comparison1.columns.difference(["TxT360"])
        ],  # Apply to all columns except "TxT360"
    )
    .set_properties(
        **{
            "text-align": "left",  # Left the text in each cell
            "padding": "10px",  # Add padding for better readability
            "word-wrap": "break-word",  # Ensure text wraps within cells
        }
    )
    .hide(axis="index")  # Hide the row index
)

# Use _repr_html_() method to get the HTML representation of the styled DataFrame
table_html = styled_table._repr_html_()
# table_html = dataset_comparison1.to_html(index=False, border=0)
# new_table_div_1 = Div(NotStr(table_html), style="margin: 40px;")
new_table_div_1 = Div(
    NotStr(table_html), 
        style="display: flex; justify-content: center; align-items: center; width: 100%; max-width: 100%; height: auto; overflow-x: auto;"
)


dataset_comparison1 = pd.DataFrame(
    {
        "Dataset": [
            "TxT360",
            "FineWeb",
            "RefinedWeb",
            "RedPajama-v2",
            "C4",
            "Dolma",
            "RedPajama-v1",
            "The Pile",
        ],
        "CommonCrawl": [
            "99 Snapshots",
            "96 Snapshots",
            "90 Snapshots",
            "84 Snapshots",
            "1 Snapshots",
            "24 Snapshots",
            "5 Snapshots",
            "0.6% of 74 Snapshots",
        ],
        "Papers": [
            "5 Sources",
            "-",
            "-",
            "-",
            "-",
            "1 Source",
            "1 Source",
            "4 Sources",
        ],
        "Wikipedia": [
            "310+ Languages",
            "-",
            "-",
            "-",
            "-",
            "what does a check mark mean?",
            "what does a check mark mean?",
            "English Only",
        ],
        "FreeLaw": [
            "Included",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "Included",
        ],
        "DM Math": [
            "Included",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "Included",
        ],
        "USPTO": [
            "Included",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "Included",
        ],
    }
)

# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = (
    dataset_comparison1.style.set_properties(
        **{"background-color": "#E1EEDB"},
        subset=pd.IndexSlice[0, :],  # Row 0 with a light green background
    )
    .apply(
        lambda x: [
            "background-color: #E1EEDB"  # Green background for row 0
            if i == 0
            else "background-color: rgb(237, 242, 251)"  # Blue background for other rows
            for i in range(len(x))
        ],
        axis=0,
    )
    .hide(axis="index")
)  # Hide the row index

# Use _repr_html_() method to get the HTML representation of the styled DataFrame
table_html = styled_table._repr_html_()
# table_html = dataset_comparison1.to_html(index=False, border=0)
table_div_1 = Div(NotStr(table_html), style="margin: 40px;")

dataset_comparison2 = pd.DataFrame(
    {
        "Dataset": [
            "TxT360",
            "FineWeb",
            "RefinedWeb",
            "RedPajama-v2",
            "C4",
            "Dolma",
            "RedPajama-v1",
            "The Pile",
        ],
        "PG-19": [
            "Included",
            "-",
            "-",
            "-",
            "-",
            "Included",
            "Included",
            "Included",
        ],
        "HackerNews": [
            "Included",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "Included",
        ],
        "Ubuntu IRC": [
            "Included",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "Included",
        ],
        "EuroParl": [
            "Included",
            "-",
            "-",
            "-",
            "-",
            "-",
            "-",
            "Included",
        ],
        "StackExchange": [
            "Included",
            "-",
            "-",
            "-",
            "-",
            "-",
            "Included",
            "Included",
        ],
        "Code": [
            "- what is this?",
            "-",
            "-",
            "-",
            "-",
            "Included",
            "Included",
            "Included",
        ],
    }
)
# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = (
    dataset_comparison2.style.set_properties(
        **{"background-color": "#E1EEDB"},
        subset=pd.IndexSlice[0, :],  # Row 0 with a light green background
    )
    .apply(
        lambda x: [
            "background-color: #E1EEDB"
            if i == 0
            else (
                "background-color: rgb(237, 242, 251)"
                if i % 2 == 0
                else "background-color: white"
            )
            for i in range(len(x))
        ],
        axis=0,
    )
    .set_table_styles(
        [
            {"selector": "table", "props": [("margin-left", "auto"), ("width", "100%")]},  # Make table responsive and centered
        ]
    )
    .hide(axis="index")
)  # Hide the row index

# Use _repr_html_() method to get the HTML representation of the styled DataFrame
table_html2 = styled_table._repr_html_()
# table_html2 = dataset_comparison2.to_html(index=False, border=0)
# table_div_2 = Div(NotStr(table_html2), style="margin: 40px;")
table_div_2 = Div(NotStr(table_html2))

dataset_sources = pd.DataFrame(
    {
        "Data Source": [
            "CommonCrawl",
            "Papers",
            "Wikipedia",
            "Freelaw",
            "DM Math",
            "USPTO",
            "PG-19",
            "HackerNews",
            "Ubuntu IRC",
            "Europarl",
            "StackExchange",
        ],
        "Raw Data Size": [
            "9.2 TB",
            "712 GB",
            "199 GB",
            "71 GB",
            "22 GB",
            "45 GB",
            "11 GB",
            "4.1 GB",
            "4.7 GB",
            "6.1 GB",
            "79 GB",
        ],
        "Token Count": [
            "4.83T",
            "154.96B",
            "35.97B",
            "16.7B",
            "5.23B",
            "4.95B",
            "2.63B",
            "1.08B",
            "1.54B",
            "1.96B",
            "27B",
        ],
        "Information Cut-Off Date": [
            "2024-30",
            "Q4 2023",
            "-",
            "Q1 2024",
            "-",
            "Q3 2024",
            "-",
            "Q4 2023",
            "Q3 2024",
            "-",
            "Q4 2023",
        ],
    }
)
# Apply table styling: Light green for the header, alternating white and light grey for rows
styled_table = (
    dataset_sources.style.apply(
        lambda x: [
            "background-color: white"
            if i % 2 == 0
            else "background-color: rgb(237, 242, 251)"
            for i in range(len(x))
        ],
        axis=0,
    )
    .set_properties(
        **{
            "text-align": "center",  # Center the text in each cell
            "padding": "10px",  # Add padding for better readability
            "word-wrap": "break-word",  # Ensure text wraps within cells
        }
    )
    .hide(axis="index")  # Hide the row index
)

table_html_data = styled_table._repr_html_()
# Wrap the table in a Div, ensuring it is centered
table_div_data = Div(
    NotStr(table_html_data), 
    # style="margin-left: auto; width: 90%; max-width: 100%; text-align: center; align: center; overflow-x: auto;"
    style="display: flex; justify-content: center; align-items: center; width: 100%; max-width: 100%; height: auto; overflow-x: auto;"

)


@app.get("/intro")
def intro():
    return Div(
        Section(
            H2("About TxT360"),
            P(  B("TL;DR "), 
                "We introduce ",
                A(B("TxT360 (Trillion eXtracted Text),"), href="https://huggingface.co/datasets/LLM360/TxT360"),
                " the first dataset to globally deduplicate 99 CommonCrawl snapshots and 14 high-quality data sources from diverse domains (e.g., FreeLaw, PG-19, etc.). The large-scale deduplication process and rich metadata stored enables precise control over data distribution. We demonstrate a simple but effective upsampling recipe that creates a 15+ trillion-token corpus, outperforming FineWeb 15T on several key metrics. With the information, TxT360 empowers pre-trainers to explore more advanced weighting techniques, a feature not commonly available in previous pre-training datasets. Our findings highlight the importance of both high-quality data sources and appropriate weighting for optimal blending in LLM training." 
            ),
            P("In line with our 360° open source spirit, we document all detailed steps, reasons of our decisions, detailed statistics, our code (stay tuned!), analysis results and more, in addition to the dataset itself. We hope this can serve as a useful resource for future developers."
            ),
            plotly2fasthtml(all_eval_res_figs["MMLU"]),
            P(
                "Building on top of the prior studies on pre-training data",
                D_cite(bibtex_key="refinedweb"),
                D_cite(bibtex_key="fineweb"),
                D_cite(bibtex_key="c4"),
                D_cite(bibtex_key="muennighoff2023scaling"),
                D_cite(bibtex_key="dolma"),
                ", TxT360 carefully implements data processing steps including extraction, filtering, deduplication, personally identifiable information removal, and other steps. Unlike DCLM",
                D_cite(bibtex_key="dclm"),
                "and RedPajama V2,",
                D_cite(bibtex_key="redpajama-v2"),
                "we also hope to provide a dataset at this scale that is ready to go, without requiring further filtering."
            ),
            P(
                B("How to Read this Blog Post?"),
                P("This document contains all the details and is lengthy. We recommend readers to use the Table of Contents to jump to the appropriate sections. The post might also be slightly too long for mobile reading (sorry!). At each top level section, we provided a quick guide for the content. We also recommend readers to consider this post as a reference for some high level statistics related to pre-training datasets."),
                P("Advanced blog navigation elements are available on laptops and larger viewing windows."),
            ),
            id="section11",
        ),
        Section(
            H2("Why TxT360"),
            P(
                "In this year we have seen excellent datasets released by the community. Among those, most datasets focus on one source (e.g., crawled websites, code bases, papers). However, it is not trivial to combine these sources together due to the potential duplication across them. TxT360 is the first dataset to combine most of sources commonly used in pretraining."
            ),
            new_table_div_1,
            # table_div_1,
            # table_div_2,
            P(
                "In LLM pretraining, it is common to combine all possible text sources due to the Scaling Law. Crawled web pages are included to provide a vast quantity of data which can cover long tail and diverse information, while curated datasets such as Wikipedia are also used, which often provide the 'deep-dive' domain information. By integrating the reach of web data with the quality of curated sources, TxT360 meets and surpasses the rigorous standards required for state-of-the-art LLM pre-training."
            ),
            P(
                "** TxT360 does not include very specific domains such as code and math. This decision was made due to the perceived low duplication code with other sources, and the different logic required to build those datasets. We leave that to future work and recommend users refer to existing projects such as Stack V2",
                D_cite(bibtex_key="lozhkov2024starcoder2stackv2"),
                ".",
            ),
            # P("Table 2: Basic TxT360 Statistics."),
            # table_div_data,
            id="section12",
        ),
        Section(
            H2("Our Approach"),
            P(
                "To produce TxT360, a comprehensive data processing pipeline was designed to account for the nuances of both web and curated datasets. The pipeline presents a unified framework for processing both data types, making it convenient and easily adaptive for users to revise and fine-tune the pipeline for their own use cases."
            ),
            P(
                "Web datasets are inherently noisy and varied. The TxT360 pipeline implements sophisticated filtering and deduplication techniques to clean and remove redundancies while preserving data integrity."
            ),
            P(
                "Curated datasets are typically structured and consistently formatted, but also can cause troubles with their own special formatting preferences. TxT360 filters these sources with selective steps to maintain their integrity while providing seamless integration into the larger dataset. Both data source types are globally deduplicated together resulting in ~5T tokens of high-quality data. The table below shows the source distribution of TxT360 tokens. ",
                B("Note that we do not recommend to use the raw distribution of the deduplicated dataset, a simple recipe is provided in the studies section."),
            ),
            table_div_data,
            P(
                "We provide details and context for the choices behind TxT360 in the respective Common Crawl Data Processing and Curated Source Processing section. A deep dive describing the deduplication process can be found in the Shared Processing Steps section."
            ),
            # Img(src="images/pipeline.png", height="300", width="600"),
            # P(
            #    "Figure 1: Data processing pipeline. All the steps are adopted for processing web data while the yellow blocks are adopted for processing curated sources."
            # ),
            id="section13",
        ),
        id="inner-text",
    )


rt("/update/{target}")(data_viewer.update)

serve()