Spaces:
Running
Running
import os | |
import streamlit as st | |
import json | |
import tarfile | |
st.set_page_config(layout="wide") | |
PARENT_DIR: str = os.path.join(os.path.dirname(os.path.abspath(__file__))) | |
EVAL_DIR: str = os.path.join(PARENT_DIR, "eval-results") | |
st.title("K2 Evaluation Gallery") | |
st.markdown("""The K2 gallery allows one to browse the output of various evaluations on intermediate K2 checkpoints, which provides an intuitive understanding on how the model develops and improves over time.""") | |
with st.sidebar: | |
html = f"<img src='https://www.llm360.ai/images/logo-highres.png' width='100' /><img src='https://huggingface.co/spaces/LLM360/k2-eval-gallery/raw/main/k2-logo.svg' width='100' />" | |
st.markdown(html, unsafe_allow_html=True) | |
metric = st.radio( | |
"Choose a metric", options=os.listdir(os.path.join(EVAL_DIR)) | |
) | |
n_shot = st.radio( | |
"Selece an n-shot number", os.listdir(os.path.join(EVAL_DIR, metric)) | |
) | |
col1, col2 = st.columns(2) | |
def render_column(col_label): | |
st.header(f"Checkpoint {col_label}") | |
ckpt = st.select_slider('Select a checkpoint', sorted(os.listdir(os.path.join(EVAL_DIR, metric, n_shot))), key=col_label + '1') | |
st.write(f'Veiwing Evaluation Results for Checkpoint: `{ckpt}`') | |
file = st.selectbox("Select a file", sorted(f_name[:-len(".tar.gz")] for f_name in os.listdir(os.path.join(EVAL_DIR, metric, n_shot, ckpt))), key=col_label + '2') | |
file += ".tar.gz" | |
with tarfile.open(os.path.join(EVAL_DIR, metric, n_shot, ckpt, file), "r:gz") as tar: | |
f = tar.extractfile(tar.next()) | |
eval_json = json.load(f) | |
if isinstance(eval_json, list): | |
doc_id = st.slider("Select a document id", 0, len(eval_json) - 1, 0, 1, key=col_label + '3') | |
st.json(eval_json[doc_id]) | |
else: | |
st.json(eval_json) | |
f.close() | |
with col1: | |
render_column('A') | |
with col2: | |
render_column('B') | |