LPX55 commited on
Commit
304c8b5
·
1 Parent(s): 4ed6d28
Files changed (1) hide show
  1. app.py +40 -45
app.py CHANGED
@@ -289,7 +289,7 @@ def call_pipe(
289
  def main():
290
  # Define the interface inputs
291
 
292
- with gr.Blocks() as demo:
293
  with gr.Group():
294
  gr.Markdown("""# HunyuanVideo Keyframe Control Lora for Video Generation
295
  **Generate videos using the HunyuanVideo model with a prompt and two (or more) frames as conditions. Gradio / HF Spaces implementation demo.**
@@ -301,66 +301,61 @@ def main():
301
  I will fill out a request for GPU allocation for the demo with HF soon.
302
 
303
  """)
304
- gr.Markdown("")
305
- gr.Markdown("")
306
- gr.Markdown("---")
307
- gr.Markdown("")
308
 
309
- with gr.Row():
310
- with gr.Column():
311
- prompt_textbox = gr.Textbox(label="Prompt", value="a subject ... ")
312
- resolution = gr.Dropdown(
313
- label="Resolution",
314
- choices=["720x1280", "544x960", "1280x720", "960x544", "720x720"],
315
- value="544x960"
316
- )
317
- with gr.Column():
318
- guidance_scale = gr.Slider(minimum=0.1, maximum=20, step=0.1, label="Guidance Scale", value=6.0)
319
- num_frames = gr.Slider(minimum=1, maximum=129, step=1, label="Number of Frames", value=49)
320
 
321
  with gr.Row():
322
  with gr.Column():
 
 
 
 
 
 
 
323
  frame1 = gr.Image(label="Frame 1", type="pil")
324
  frame2 = gr.Image(label="Frame 2", type="pil")
325
  num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=30)
 
 
326
  generate_button = gr.Button("Generate Video")
327
  with gr.Column():
328
  outputs = gr.Video(label="Generated Video")
329
-
330
- with gr.Accordion():
331
- gr.Markdown("""
332
 
333
- ## HunyuanVideo Keyframe Control Lora is an adapter for HunyuanVideo T2V model for keyframe-based video generation.
334
- ---
335
- ​**Our architecture builds upon existing models, introducing key enhancements to optimize keyframe-based video generation**:​
336
-
337
- * We modify the input patch embedding projection layer to effectively incorporate keyframe information. By adjusting the convolutional input parameters, we enable the model to process image inputs within the Diffusion Transformer (DiT) framework.​
338
- * We apply Low-Rank Adaptation (LoRA) across all linear layers and the convolutional input layer. This approach facilitates efficient fine-tuning by introducing low-rank matrices that approximate the weight updates, thereby preserving the base model's foundational capabilities while reducing the number of trainable parameters.
339
- * The model is conditioned on user-defined keyframes, allowing precise control over the generated video's start and end frames. This conditioning ensures that the generated content aligns seamlessly with the specified keyframes, enhancing the coherence and narrative flow of the video.​
340
 
341
- ## Example Results
342
-
343
- <div>
 
344
 
345
- | Image 1 | Image 2 | Generated Video |
346
- |---------|---------|-----------------|
347
- | <img src="https://content.dashtoon.ai/stability-images/41aeca63-064a-4003-8c8b-bfe2cc80d275.png" > | ![Image 2](https://content.dashtoon.ai/stability-images/28956177-3455-4b56-bb6c-73eacef323ca.png) | <video controls autoplay src="https://content.dashtoon.ai/stability-images/14b7dd1a-1f46-4c4c-b4ec-9d0f948712af.mp4"></video> |
348
- | ![Image 1](https://content.dashtoon.ai/stability-images/ddabbf2f-4218-497b-8239-b7b882d93000.png) | ![Image 2](https://content.dashtoon.ai/stability-images/b603acba-40a4-44ba-aa26-ed79403df580.png) | <video controls autoplay src="https://content.dashtoon.ai/stability-images/b00ba193-b3b7-41a1-9bc1-9fdaceba6efa.mp4"></video> |
349
- | ![Image 1](https://content.dashtoon.ai/stability-images/5298cf0c-0955-4568-935a-2fb66045f21d.png) | ![Image 2](https://content.dashtoon.ai/stability-images/722a4ea7-7092-4323-8e83-3f627e8fd7f8.png) | <video controls autoplay src="https://content.dashtoon.ai/stability-images/0cb84780-4fdf-4ecc-ab48-12e7e1055a39.mp4"></video> |
350
- | ![Image 1](https://content.dashtoon.ai/stability-images/69d9a49f-95c0-4e85-bd49-14a039373c8b.png) | ![Image 2](https://content.dashtoon.ai/stability-images/0cef7fa9-e15a-48ec-9bd3-c61921181802.png) | <video controls autoplay src="https://content.dashtoon.ai/stability-images/ce12156f-0ac2-4d16-b489-37e85c61b5b2.mp4"></video> |
 
351
 
352
- </div>
 
 
 
 
 
353
 
354
- ## Recommended Settings
355
- 1. The model works best on human subjects. Single subject images work slightly better.
356
- 2. It is recommended to use the following image generation resolutions `720x1280`, `544x960`, `1280x720`, `960x544`.
357
- 3. It is recommended to set frames from 33 upto 97. Can go upto 121 frames as well (but not tested much).
358
- 4. Prompting helps a lot but works even without. The prompt can be as simple as just the name of the object you want to generate or can be detailed.
359
- 5. `num_inference_steps` is recommended to be 50, but for fast results you can use 30 as well. Anything less than 30 is not recommended.
360
 
361
- ## FINAL THOUGHTS: This ZeroGPU space, while successfully loaded, has its memory packed to the rim. If you're lucky you may be able to sneak in a small demo inference here and there, but you will most definitely not be using the recommended settings listed above. Help, of course, is not only welcome but very much appreciated. Learn more about our non-profit initiative, [AI Without Borders](https://huggingface.co/aiwithoutborders-xyz), by following us on Huggingface or on [X](http://x.com/borderlesstools), where we will be announcing a handful of exciting developments.
362
-
363
- """, sanitize_html=False, elem_id="md_footer", container=True)
364
  generate_button.click(generate_video, inputs=[prompt_textbox, frame1, frame2, resolution, guidance_scale, num_frames, num_inference_steps], outputs=outputs)
365
 
366
  demo.launch(show_error=True)
 
289
  def main():
290
  # Define the interface inputs
291
 
292
+ with gr.Blocks(css=".gradio-container { max-width: 80vw; margin: 0 auto; }, /* Target all media elements (img, video, audio) within table cells */ tr td img, tr td video, tr td audio { max-height: 268px; object-fit: contain; display: block; width: auto; } /* Target all table cells within table rows */ tr td { overflow: hidden; }") as demo:
293
  with gr.Group():
294
  gr.Markdown("""# HunyuanVideo Keyframe Control Lora for Video Generation
295
  **Generate videos using the HunyuanVideo model with a prompt and two (or more) frames as conditions. Gradio / HF Spaces implementation demo.**
 
301
  I will fill out a request for GPU allocation for the demo with HF soon.
302
 
303
  """)
 
 
 
 
304
 
305
+
 
 
 
 
 
 
 
 
 
 
306
 
307
  with gr.Row():
308
  with gr.Column():
309
+ with gr.Row():
310
+ prompt_textbox = gr.Textbox(label="Prompt", value="a subject ...", scale=2)
311
+ resolution = gr.Dropdown(
312
+ label="Resolution",
313
+ choices=["720x1280", "544x960", "1280x720", "960x544", "720x720"],
314
+ value="544x960"
315
+ )
316
  frame1 = gr.Image(label="Frame 1", type="pil")
317
  frame2 = gr.Image(label="Frame 2", type="pil")
318
  num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, label="Number of Inference Steps", value=30)
319
+ guidance_scale = gr.Slider(minimum=0.1, maximum=20, step=0.1, label="Guidance Scale", value=6.0)
320
+ num_frames = gr.Slider(minimum=1, maximum=129, step=1, label="Number of Frames", value=49)
321
  generate_button = gr.Button("Generate Video")
322
  with gr.Column():
323
  outputs = gr.Video(label="Generated Video")
324
+ with gr.Accordion(label="Examples"):
325
+ gr.Markdown("""
326
+ <div>
327
 
328
+ | Starting Frame | End Frame | Generated Video |
329
+ |---------|---------|-----------------|
330
+ | <img src="https://content.dashtoon.ai/stability-images/41aeca63-064a-4003-8c8b-bfe2cc80d275.png" > | ![Image 2](https://content.dashtoon.ai/stability-images/28956177-3455-4b56-bb6c-73eacef323ca.png) | <video controls autoplay src="https://content.dashtoon.ai/stability-images/14b7dd1a-1f46-4c4c-b4ec-9d0f948712af.mp4"></video> |
331
+ | ![Image 1](https://content.dashtoon.ai/stability-images/ddabbf2f-4218-497b-8239-b7b882d93000.png) | ![Image 2](https://content.dashtoon.ai/stability-images/b603acba-40a4-44ba-aa26-ed79403df580.png) | <video controls autoplay src="https://content.dashtoon.ai/stability-images/b00ba193-b3b7-41a1-9bc1-9fdaceba6efa.mp4"></video> |
332
+ | ![Image 1](https://content.dashtoon.ai/stability-images/5298cf0c-0955-4568-935a-2fb66045f21d.png) | ![Image 2](https://content.dashtoon.ai/stability-images/722a4ea7-7092-4323-8e83-3f627e8fd7f8.png) | <video controls autoplay src="https://content.dashtoon.ai/stability-images/0cb84780-4fdf-4ecc-ab48-12e7e1055a39.mp4"></video> |
333
+ | ![Image 1](https://content.dashtoon.ai/stability-images/69d9a49f-95c0-4e85-bd49-14a039373c8b.png) | ![Image 2](https://content.dashtoon.ai/stability-images/0cef7fa9-e15a-48ec-9bd3-c61921181802.png) | <video controls autoplay src="https://content.dashtoon.ai/stability-images/ce12156f-0ac2-4d16-b489-37e85c61b5b2.mp4"></video> |
 
334
 
335
+ </div>
336
+ """, sanitize_html=False)
337
+ with gr.Accordion():
338
+ gr.Markdown("""
339
 
340
+ ## HunyuanVideo Keyframe Control Lora is an adapter for HunyuanVideo T2V model for keyframe-based video generation.
341
+ ---
342
+ ​**Our architecture builds upon existing models, introducing key enhancements to optimize keyframe-based video generation**:​
343
+
344
+ * We modify the input patch embedding projection layer to effectively incorporate keyframe information. By adjusting the convolutional input parameters, we enable the model to process image inputs within the Diffusion Transformer (DiT) framework.​
345
+ * We apply Low-Rank Adaptation (LoRA) across all linear layers and the convolutional input layer. This approach facilitates efficient fine-tuning by introducing low-rank matrices that approximate the weight updates, thereby preserving the base model's foundational capabilities while reducing the number of trainable parameters.
346
+ * The model is conditioned on user-defined keyframes, allowing precise control over the generated video's start and end frames. This conditioning ensures that the generated content aligns seamlessly with the specified keyframes, enhancing the coherence and narrative flow of the video.​
347
 
348
+ ## Recommended Settings
349
+ 1. The model works best on human subjects. Single subject images work slightly better.
350
+ 2. It is recommended to use the following image generation resolutions `720x1280`, `544x960`, `1280x720`, `960x544`.
351
+ 3. It is recommended to set frames from 33 upto 97. Can go upto 121 frames as well (but not tested much).
352
+ 4. Prompting helps a lot but works even without. The prompt can be as simple as just the name of the object you want to generate or can be detailed.
353
+ 5. `num_inference_steps` is recommended to be 50, but for fast results you can use 30 as well. Anything less than 30 is not recommended.
354
 
355
+ ## FINAL THOUGHTS: This ZeroGPU space, while successfully loaded, has its memory packed to the rim. If you're lucky you may be able to sneak in a small demo inference here and there, but you will most definitely not be using the recommended settings listed above. Help, of course, is not only welcome but very much appreciated. Learn more about our non-profit initiative, [AI Without Borders](https://huggingface.co/aiwithoutborders-xyz), by following us on Huggingface or on [X](http://x.com/borderlesstools), where we will be announcing a handful of exciting developments.
356
+
357
+ """, sanitize_html=False, elem_id="md_footer", container=True)
 
 
 
358
 
 
 
 
359
  generate_button.click(generate_video, inputs=[prompt_textbox, frame1, frame2, resolution, guidance_scale, num_frames, num_inference_steps], outputs=outputs)
360
 
361
  demo.launch(show_error=True)