JanPf's picture
Update app.py
8714fcf verified
raw
history blame
2.37 kB
import os
import json
import gradio as gr
from llama_cpp import Llama
# Get environment variables
model_id = os.getenv('MODEL')
quant = os.getenv('QUANT')
chat_template = os.getenv('CHAT_TEMPLATE')
# Interface variables
model_name = model_id.split('/')[-1]
title = f"🇩🇪 {model_name}"
description = f"Chat with <a href=\"https://huggingface.co/{model_id}\">{model_name}</a> in GGUF format ({quant})!"
print("find gguf file")
import os
from pathlib import Path
# Get the Hugging Face cache directory
hf_cache_dir = os.getenv("HF_HOME", str(Path.home() / ".cache" / "huggingface"))
# List all files in the Hugging Face cache directory
for root, dirs, files in os.walk(hf_cache_dir):
for file in files:
print(os.path.join(root, file))
print("loading model")
# Initialize the LLM
llm = Llama(model_path="/home/user/.cache/huggingface/hub/models--LSX-UniWue--LLaMmlein_1B_alternative_formats/snapshots/7d97b69ae6910b5f317be2dbd5b4820d848c66b4/LLaMmlein_1B_chat_selected.gguf",
n_ctx=32768,
n_threads=2,
chat_format=chat_template)
# Function for streaming chat completions
def chat_stream_completion(message, history):
#messages_prompts = [{"role": "system", "content": system_prompt}]
messages_prompts = []
for human, assistant in history:
messages_prompts.append({"role": "user", "content": human})
messages_prompts.append({"role": "assistant", "content": assistant})
messages_prompts.append({"role": "user", "content": message})
response = llm.create_chat_completion(
messages=messages_prompts,
stream=True,
stop=["<|im_end|>"]
)
message_repl = ""
for chunk in response:
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
message_repl = message_repl + chunk['choices'][0]["delta"]["content"]
yield message_repl
print("starting gradio")
# Gradio chat interface
gr.ChatInterface(
fn=chat_stream_completion,
title=title,
description=description,
#additional_inputs=[gr.Textbox("Du bist ein hilfreicher Assistent.")],
#additional_inputs_accordion="📝 System prompt",
examples=[
["Was ist ein Large Language Model?"],
["Was ist 9+2-1?"],
["Schreibe Python code um die Fibonacci-Reihenfolge auszugeben."]
]
).queue().launch()