DiMeR / app.py
LutaoJiang's picture
Revert "update"
bb7e021
import os
import gradio as gr
import subprocess
import spaces
import ctypes
import shlex
import torch
import argparse
print(f'gradio version: {gr.__version__}')
# Add command line argument parsing
parser = argparse.ArgumentParser(description='DiMeR Demo')
parser.add_argument('--ui_only', action='store_true', help='Only load the UI interface, do not initialize models (for UI debugging)')
args = parser.parse_args()
UI_ONLY_MODE = args.ui_only
print(f"UI_ONLY_MODE: {UI_ONLY_MODE}")
if not UI_ONLY_MODE:
subprocess.run(
shlex.split(
"pip install ./custom_diffusers --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/renderutils_plugin-0.1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
)
)
# Status variables for tracking if detailed prompt and image have been generated
generated_detailed_prompt = False
generated_image = False
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
print("==> finished installation")
# Only execute CUDA installation in non-UI debug mode
if not UI_ONLY_MODE:
install_cuda_toolkit()
@spaces.GPU
def check_gpu():
if "CUDA_VISIBLE_DEVICES" in os.environ:
del os.environ["CUDA_VISIBLE_DEVICES"]
os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
subprocess.run(['nvidia-smi']) # Test if CUDA is available
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
print("Device count:", torch.cuda.device_count())
# test nvdiffrast
import nvdiffrast.torch as dr
dr.RasterizeCudaContext(device="cuda:0")
print("nvdiffrast initialized successfully")
# Only check GPU in non-UI debug mode
if not UI_ONLY_MODE:
check_gpu()
import base64
import re
import sys
sys.path.append(os.path.abspath(os.path.join(__file__, '../')))
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '32'
import shutil
import json
import requests
import shutil
import threading
from PIL import Image
import time
import trimesh
import random
import time
import numpy as np
# Only import video rendering module and initialize models in non-UI debug mode
if not UI_ONLY_MODE:
from video_render import render_video_from_obj
access_token = os.getenv("HUGGINGFACE_TOKEN")
from pipeline.kiss3d_wrapper import init_wrapper_from_config, run_text_to_3d, run_image_to_3d, image2mesh_preprocess, image2mesh_main
# Add logo file path and hyperlinks
LOGO_PATH = "app_assets/logo_temp_.png" # Update this to the actual path of your logo
ARXIV_LINK = "https://arxiv.org/pdf/2504.17670"
GITHUB_LINK = "https://github.com/lutao2021/DiMeR"
# Only initialize models in non-UI debug mode
if not UI_ONLY_MODE:
k3d_wrapper = init_wrapper_from_config('./pipeline/pipeline_config/default.yaml')
from models.ISOMER.scripts.utils import fix_vert_color_glb
torch.backends.cuda.matmul.allow_tf32 = True
TEMP_MESH_ADDRESS=''
mesh_cache = None
preprocessed_input_image = None
def save_cached_mesh():
global mesh_cache
print('save_cached_mesh() called')
return mesh_cache
def save_py3dmesh_with_trimesh_fast(meshes, save_glb_path=TEMP_MESH_ADDRESS, apply_sRGB_to_LinearRGB=True):
from pytorch3d.structures import Meshes
import trimesh
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
@spaces.GPU
def text_to_detailed(prompt, seed=None):
# test nvdiffrast
import nvdiffrast.torch as dr
dr.RasterizeCudaContext(device="cuda:0")
print("nvdiffrast initialized successfully")
print(f"torch.cuda.is_available():{torch.cuda.is_available()}")
# print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
return k3d_wrapper.get_detailed_prompt(prompt, seed)
@spaces.GPU(duration=120)
def text_to_image(prompt, seed=None, strength=1.0,lora_scale=1.0, num_inference_steps=18, redux_hparam=None, init_image=None, **kwargs):
# subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
# print(f"Before text_to_image: {torch.cuda.memory_allocated() / 1024**3} GB")
# k3d_wrapper.flux_pipeline.enable_xformers_memory_efficient_attention()
k3d_wrapper.renew_uuid()
init_image = None
# if init_image_path is not None:
# init_image = Image.open(init_image_path)
subprocess.run(['nvidia-smi']) # Test if CUDA is available
with torch.no_grad():
result = k3d_wrapper.generate_3d_bundle_image_text(
prompt,
image=init_image,
strength=strength,
lora_scale=lora_scale,
num_inference_steps=num_inference_steps,
seed=int(seed) if seed is not None else None,
redux_hparam=redux_hparam,
save_intermediate_results=True,
**kwargs)
return result[-1]
@spaces.GPU(duration=120)
def image2mesh_preprocess_(input_image_, seed, use_mv_rgb=True):
global preprocessed_input_image
seed = int(seed) if seed is not None else None
# TODO: delete this later
# k3d_wrapper.del_llm_model()
input_image_save_path, reference_save_path, caption = image2mesh_preprocess(k3d_wrapper, input_image_, seed, use_mv_rgb)
preprocessed_input_image = Image.open(input_image_save_path)
return reference_save_path, caption
@spaces.GPU(duration=120)
def image2mesh_main_(reference_3d_bundle_image, caption, seed, strength1=0.5, strength2=0.95, enable_redux=True, use_controlnet=True, if_video=True):
subprocess.run(['nvidia-smi'])
global mesh_cache
seed = int(seed) if seed is not None else None
# TODO: delete this later
# k3d_wrapper.del_llm_model()
input_image = preprocessed_input_image
reference_3d_bundle_image = torch.tensor(reference_3d_bundle_image).permute(2,0,1)/255
gen_save_path, recon_mesh_path = image2mesh_main(k3d_wrapper, input_image, reference_3d_bundle_image, caption=caption, seed=seed, strength1=strength1, strength2=strength2, enable_redux=enable_redux, use_controlnet=use_controlnet)
mesh_cache = recon_mesh_path
if if_video:
video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
render_video_from_obj(recon_mesh_path, video_path)
print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
return gen_save_path, video_path, mesh_cache
else:
return gen_save_path, recon_mesh_path, mesh_cache
# return gen_save_path, recon_mesh_path
@spaces.GPU(duration=120)
def bundle_image_to_mesh(
gen_3d_bundle_image,
camera_radius=3.5,
lrm_radius = 3.5,
isomer_radius = 4.2,
reconstruction_stage1_steps = 0,
reconstruction_stage2_steps = 50,
save_intermediate_results=False
):
global mesh_cache
print(f"Before bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
k3d_wrapper.recon_model.init_flexicubes_geometry("cuda:0", fovy=50.0)
print(f"init_flexicubes_geometry done")
# TODO: delete this later
k3d_wrapper.del_llm_model()
print(f"Before bundle_image_to_mesh after deleting llm model: {torch.cuda.memory_allocated() / 1024**3} GB")
gen_3d_bundle_image = torch.tensor(gen_3d_bundle_image).permute(2,0,1)/255
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, camera_radius=camera_radius, lrm_render_radius=lrm_radius, isomer_radius=isomer_radius, save_intermediate_results=save_intermediate_results, reconstruction_stage1_steps=int(reconstruction_stage1_steps), reconstruction_stage2_steps=int(reconstruction_stage2_steps))
mesh_cache = recon_mesh_path
print(f"Mesh generated at: {mesh_cache}")
# Check if file exists
if not os.path.exists(mesh_cache):
print(f"Warning: Generated mesh file does not exist: {mesh_cache}")
return None, mesh_cache
return recon_mesh_path, mesh_cache
# _HEADER_=f"""
# <img src="{LOGO_PATH}">
# <h2><b>Official 🤗 Gradio Demo</b></h2>
# <h2><b>Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation</b></h2>
# <h2>Try our demo:Please click the buttons in sequence. Feel free to redo some steps multiple times until you get a </h2>
# [![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK}) [![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})
# """
_STAR_ = f"""
<h2>If DiMeR is helpful, please help to ⭐ the <a href={GITHUB_LINK} target='_blank'>Github Repo</a>. Sincerely Thanks!</h2>
"""
_CITE_ = r"""
<h2>📝 Citation</h2>
<h2>If you find our work useful for your research or applications, please cite using the following papers:</h2>
```bibtex
@article{jiang2025dimer,
title={DiMeR: Disentangled Mesh Reconstruction Model},
author={Jiang, Lutao and Lin, Jiantao and Chen, Kanghao and Ge, Wenhang and Yang, Xin and Jiang, Yifan and Lyu, Yuanhuiyi and Zheng, Xu and Chen, Yingcong},
journal={arXiv preprint arXiv:2504.17670},
year={2025}
}
@article{lin2025kiss3dgenrepurposingimagediffusion,
title={Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation},
author={Jiantao Lin, Xin Yang, Meixi Chen, Yingjie Xu, Dongyu Yan, Leyi Wu, Xinli Xu, Lie XU, Shunsi Zhang, Ying-Cong Chen},
journal={arXiv preprint arXiv:2503.01370},
year={2025}
}
```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
def image_to_base64(image_path):
"""Converts an image file to a base64-encoded string."""
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
# def main():
if not UI_ONLY_MODE:
torch.set_grad_enabled(False)
# Convert the logo image to base64
logo_base64 = image_to_base64(LOGO_PATH)
# with gr.Blocks() as demo:
with gr.Blocks(css="""
.orange-button {
background-color: #FF8C00 !important;
border-color: #FF8C00 !important;
color: black !important;
}
.gradio-container {
max-width: 1000px;
margin: auto;
width: 100%;
}
#center-align-column {
display: flex;
justify-content: center;
align-items: center;
}
#right-align-column {
display: flex;
justify-content: flex-end;
align-items: center;
}
h1 {text-align: center;}
h2 {text-align: center;}
h3 {text-align: center;}
p {text-align: center;}
img {text-align: right;}
.right {
display: block;
margin-left: auto;
}
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
}
#content-container {
max-width: 1200px;
margin: 0 auto;
}
""",elem_id="col-container") as demo:
# Header Section
# gr.Image(value=LOGO_PATH, width=64, height=64)
# gr.Markdown(_HEADER_)
with gr.Row(elem_id="content-container"):
with gr.Column(scale=7, elem_id="center-align-column"):
gr.Markdown(f"""
# Official 🤗 Gradio Demo
# DiMeR: Disentangled Mesh Reconstruction Model""")
gr.HTML(f"""
<div style="display: flex; justify-content: center; align-items: center; gap: 10px;">
<a href="{ARXIV_LINK}" target="_blank">
<img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv">
</a>
<a href="{GITHUB_LINK}" target="_blank">
<img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub">
</a>
</div>
""")
gr.Markdown(_STAR_)
# Tabs Section
with gr.Tabs() as main_tabs:
with gr.TabItem('Text-to-3D', id='tab_text_to_3d'):
gr.Markdown("Click the button 'One-click Generation' or click the buttons one by one.")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(value="", label="Input Prompt", lines=4, placeholder="input prompt here, english or chinese")
# Modify the Examples section to display horizontally
gr.Examples(
examples=[
["A cat"],
["A person wearing a virtual reality headset, sitting position, bent legs, clasped hands."],
["A battle mech in a mix of red, blue, and black color, with a cannon on the head."],
["骷髅头, 邪恶的"],
],
inputs=[prompt],
label="Example Prompts",
examples_per_page=4 # Force all examples to be on a single row
)
with gr.Accordion("Advanced Parameters", open=False):
seed1 = gr.Number(value=666, label="Seed")
btn_one_click_generate = gr.Button("One-click Generation", elem_id="one-click-generate-btn", elem_classes=["orange-button"])
btn_text2detailed = gr.Button("1. Refine to detailed prompt")
gr.Markdown("---")
detailed_prompt = gr.Textbox(value="", label="Detailed Prompt", placeholder="detailed prompt will be generated here base on your input prompt. You can also edit this prompt", lines=10, interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
with gr.Row():
img_gen_seed = gr.Number(value=666, label="Image Generation Seed")
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=18, step=1, label="Inference Steps")
with gr.Row():
strength = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="Strength")
lora_scale = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, step=0.05, label="LoRA Scale")
btn_text2img = gr.Button("2. Generate Images")
with gr.Column(scale=1):
output_image1 = gr.Image(label="Generated Image", interactive=False, width=800, height=350, container=True)
with gr.Accordion("Advanced Parameters", open=False):
camera_radius = gr.Slider(minimum=3.0, maximum=6.0, value=3.5, step=0.01, label="Camera Radius")
btn_gen_mesh = gr.Button("3. Generate Mesh")
# Textured mesh view
output_mesh_textured = gr.Model3D(label="3D Mesh Viewer", interactive=False, height=300)
download_1 = gr.DownloadButton(label="Download Mesh", interactive=False)
with gr.TabItem('Image-to-3D (coming soon)', id='tab_image_to_3d'):
gr.Markdown("## Coming Soon")
with gr.TabItem('Sparse-view-to-3D (coming soon)', id='tab_sparse_view_to_3d'):
gr.Markdown("## Coming Soon")
# Button Click Events
# Text2
btn_text2detailed.click(fn=text_to_detailed, inputs=[prompt, seed1], outputs=detailed_prompt)
btn_text2img.click(fn=text_to_image, inputs=[detailed_prompt, img_gen_seed, strength, lora_scale, num_inference_steps], outputs=output_image1)
# Split the mesh generation and video rendering steps
btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1, camera_radius], outputs=[output_mesh_textured, download_1]).then(
lambda: gr.Button(interactive=True),
outputs=[download_1],
)
# Define a helper function for video rendering and correctly returning the video path
# def render_and_return_video(mesh_path):
# if not mesh_path or not os.path.exists(mesh_path):
# print(f"Warning: Mesh file doesn't exist: {mesh_path}")
# return None
# video_path = mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
# print(f"Rendering video to: {video_path}")
# try:
# render_video_from_obj(mesh_path, video_path)
# print(f"Video successfully rendered to: {video_path}")
# if os.path.exists(video_path):
# return video_path
# else:
# print(f"Warning: Video file was not created: {video_path}")
# return None
# except Exception as e:
# print(f"Error during video rendering: {e}")
# return None
# Add separate button for video rendering
# btn_render_video.click(fn=render_and_return_video,
# inputs=download_1,
# outputs=output_video1)
# Add a new function for one-click generation
def one_click_generate(input_prompt, seed):
return input_prompt, seed
# Define functions for sequential execution steps
def sequential_step1(input_prompt, seed):
# Step 1: Generate detailed prompt
detailed = text_to_detailed(input_prompt, seed)
return detailed
def sequential_step2(detailed, seed):
# Step 2: Generate image
image = text_to_image(detailed, seed, 1.0, 1.0, 18)
return image
def sequential_step3(image):
# Step 3: Generate 3D mesh
geometry_mesh_path, textured_mesh_path, mesh_path = bundle_image_to_mesh(image)
return geometry_mesh_path, textured_mesh_path, mesh_path
def enable_download_button():
return gr.Button(interactive=True)
# Modify one-click generation button's click event using chained .then() calls
btn_one_click_generate.click(
fn=one_click_generate,
inputs=[prompt, seed1],
outputs=[prompt, img_gen_seed]
).then(
fn=sequential_step1,
inputs=[prompt, img_gen_seed],
outputs=detailed_prompt
).then(
fn=sequential_step2,
inputs=[detailed_prompt, img_gen_seed],
outputs=output_image1
).then(
fn=sequential_step3,
inputs=output_image1,
outputs=[output_mesh_textured, download_1]
).then(
fn=enable_download_button,
outputs=download_1
)
with gr.Row():
pass
with gr.Row():
gr.Markdown(_CITE_)
# Modify launch parameters to ensure background processing can continue
demo.launch()
# if __name__ == "__main__":
# main()