Spaces:
Build error
Build error
from typing import List, Tuple | |
import cv2 | |
import numpy | |
from facefusion import inference_manager, state_manager | |
from facefusion.download import conditional_download_hashes, conditional_download_sources | |
from facefusion.face_helper import create_rotated_matrix_and_size, create_static_anchors, distance_to_bounding_box, distance_to_face_landmark_5, normalize_bounding_box, transform_bounding_box, transform_points | |
from facefusion.filesystem import resolve_relative_path | |
from facefusion.thread_helper import thread_semaphore | |
from facefusion.typing import Angle, BoundingBox, DownloadSet, FaceLandmark5, InferencePool, ModelSet, Score, VisionFrame | |
from facefusion.vision import resize_frame_resolution, unpack_resolution | |
MODEL_SET : ModelSet =\ | |
{ | |
'retinaface': | |
{ | |
'hashes': | |
{ | |
'retinaface': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/retinaface_10g.hash', | |
'path': resolve_relative_path('../.assets/models/retinaface_10g.hash') | |
} | |
}, | |
'sources': | |
{ | |
'retinaface': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/retinaface_10g.onnx', | |
'path': resolve_relative_path('../.assets/models/retinaface_10g.onnx') | |
} | |
} | |
}, | |
'scrfd': | |
{ | |
'hashes': | |
{ | |
'scrfd': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/scrfd_2.5g.hash', | |
'path': resolve_relative_path('../.assets/models/scrfd_2.5g.hash') | |
} | |
}, | |
'sources': | |
{ | |
'scrfd': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/scrfd_2.5g.onnx', | |
'path': resolve_relative_path('../.assets/models/scrfd_2.5g.onnx') | |
} | |
} | |
}, | |
'yoloface': | |
{ | |
'hashes': | |
{ | |
'yoloface': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/yoloface_8n.hash', | |
'path': resolve_relative_path('../.assets/models/yoloface_8n.hash') | |
} | |
}, | |
'sources': | |
{ | |
'yoloface': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/yoloface_8n.onnx', | |
'path': resolve_relative_path('../.assets/models/yoloface_8n.onnx') | |
} | |
} | |
} | |
} | |
def get_inference_pool() -> InferencePool: | |
_, model_sources = collect_model_downloads() | |
return inference_manager.get_inference_pool(__name__, model_sources) | |
def clear_inference_pool() -> None: | |
inference_manager.clear_inference_pool(__name__) | |
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]: | |
model_hashes = {} | |
model_sources = {} | |
if state_manager.get_item('face_detector_model') in [ 'many', 'retinaface' ]: | |
model_hashes['retinaface'] = MODEL_SET.get('retinaface').get('hashes').get('retinaface') | |
model_sources['retinaface'] = MODEL_SET.get('retinaface').get('sources').get('retinaface') | |
if state_manager.get_item('face_detector_model') in [ 'many', 'scrfd' ]: | |
model_hashes['scrfd'] = MODEL_SET.get('scrfd').get('hashes').get('scrfd') | |
model_sources['scrfd'] = MODEL_SET.get('scrfd').get('sources').get('scrfd') | |
if state_manager.get_item('face_detector_model') in [ 'many', 'yoloface' ]: | |
model_hashes['yoloface'] = MODEL_SET.get('yoloface').get('hashes').get('yoloface') | |
model_sources['yoloface'] = MODEL_SET.get('yoloface').get('sources').get('yoloface') | |
return model_hashes, model_sources | |
def pre_check() -> bool: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
model_hashes, model_sources = collect_model_downloads() | |
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources) | |
def detect_faces(vision_frame : VisionFrame) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]: | |
all_bounding_boxes : List[BoundingBox] = [] | |
all_face_scores : List[Score] = [] | |
all_face_landmarks_5 : List[FaceLandmark5] = [] | |
if state_manager.get_item('face_detector_model') in [ 'many', 'retinaface' ]: | |
bounding_boxes, face_scores, face_landmarks_5 = detect_with_retinaface(vision_frame, state_manager.get_item('face_detector_size')) | |
all_bounding_boxes.extend(bounding_boxes) | |
all_face_scores.extend(face_scores) | |
all_face_landmarks_5.extend(face_landmarks_5) | |
if state_manager.get_item('face_detector_model') in [ 'many', 'scrfd' ]: | |
bounding_boxes, face_scores, face_landmarks_5 = detect_with_scrfd(vision_frame, state_manager.get_item('face_detector_size')) | |
all_bounding_boxes.extend(bounding_boxes) | |
all_face_scores.extend(face_scores) | |
all_face_landmarks_5.extend(face_landmarks_5) | |
if state_manager.get_item('face_detector_model') in [ 'many', 'yoloface' ]: | |
bounding_boxes, face_scores, face_landmarks_5 = detect_with_yoloface(vision_frame, state_manager.get_item('face_detector_size')) | |
all_bounding_boxes.extend(bounding_boxes) | |
all_face_scores.extend(face_scores) | |
all_face_landmarks_5.extend(face_landmarks_5) | |
all_bounding_boxes = [ normalize_bounding_box(all_bounding_box) for all_bounding_box in all_bounding_boxes ] | |
return all_bounding_boxes, all_face_scores, all_face_landmarks_5 | |
def detect_rotated_faces(vision_frame : VisionFrame, angle : Angle) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]: | |
rotated_matrix, rotated_size = create_rotated_matrix_and_size(angle, vision_frame.shape[:2][::-1]) | |
rotated_vision_frame = cv2.warpAffine(vision_frame, rotated_matrix, rotated_size) | |
rotated_inverse_matrix = cv2.invertAffineTransform(rotated_matrix) | |
bounding_boxes, face_scores, face_landmarks_5 = detect_faces(rotated_vision_frame) | |
bounding_boxes = [ transform_bounding_box(bounding_box, rotated_inverse_matrix) for bounding_box in bounding_boxes ] | |
face_landmarks_5 = [ transform_points(face_landmark_5, rotated_inverse_matrix) for face_landmark_5 in face_landmarks_5 ] | |
return bounding_boxes, face_scores, face_landmarks_5 | |
def detect_with_retinaface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]: | |
face_detector = get_inference_pool().get('retinaface') | |
face_detector_width, face_detector_height = unpack_resolution(face_detector_size) | |
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height)) | |
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0] | |
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1] | |
feature_strides = [ 8, 16, 32 ] | |
feature_map_channel = 3 | |
anchor_total = 2 | |
bounding_boxes = [] | |
face_scores = [] | |
face_landmarks_5 = [] | |
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size) | |
with thread_semaphore(): | |
detections = face_detector.run(None, | |
{ | |
'input': detect_vision_frame | |
}) | |
for index, feature_stride in enumerate(feature_strides): | |
keep_indices = numpy.where(detections[index] >= state_manager.get_item('face_detector_score'))[0] | |
if numpy.any(keep_indices): | |
stride_height = face_detector_height // feature_stride | |
stride_width = face_detector_width // feature_stride | |
anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width) | |
bounding_box_raw = detections[index + feature_map_channel] * feature_stride | |
face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride | |
for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]: | |
bounding_boxes.append(numpy.array( | |
[ | |
bounding_box[0] * ratio_width, | |
bounding_box[1] * ratio_height, | |
bounding_box[2] * ratio_width, | |
bounding_box[3] * ratio_height, | |
])) | |
for score in detections[index][keep_indices]: | |
face_scores.append(score[0]) | |
for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]: | |
face_landmarks_5.append(face_landmark_5 * [ ratio_width, ratio_height ]) | |
return bounding_boxes, face_scores, face_landmarks_5 | |
def detect_with_scrfd(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]: | |
face_detector = get_inference_pool().get('scrfd') | |
face_detector_width, face_detector_height = unpack_resolution(face_detector_size) | |
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height)) | |
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0] | |
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1] | |
feature_strides = [ 8, 16, 32 ] | |
feature_map_channel = 3 | |
anchor_total = 2 | |
bounding_boxes = [] | |
face_scores = [] | |
face_landmarks_5 = [] | |
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size) | |
with thread_semaphore(): | |
detections = face_detector.run(None, | |
{ | |
'input': detect_vision_frame | |
}) | |
for index, feature_stride in enumerate(feature_strides): | |
keep_indices = numpy.where(detections[index] >= state_manager.get_item('face_detector_score'))[0] | |
if numpy.any(keep_indices): | |
stride_height = face_detector_height // feature_stride | |
stride_width = face_detector_width // feature_stride | |
anchors = create_static_anchors(feature_stride, anchor_total, stride_height, stride_width) | |
bounding_box_raw = detections[index + feature_map_channel] * feature_stride | |
face_landmark_5_raw = detections[index + feature_map_channel * 2] * feature_stride | |
for bounding_box in distance_to_bounding_box(anchors, bounding_box_raw)[keep_indices]: | |
bounding_boxes.append(numpy.array( | |
[ | |
bounding_box[0] * ratio_width, | |
bounding_box[1] * ratio_height, | |
bounding_box[2] * ratio_width, | |
bounding_box[3] * ratio_height, | |
])) | |
for score in detections[index][keep_indices]: | |
face_scores.append(score[0]) | |
for face_landmark_5 in distance_to_face_landmark_5(anchors, face_landmark_5_raw)[keep_indices]: | |
face_landmarks_5.append(face_landmark_5 * [ ratio_width, ratio_height ]) | |
return bounding_boxes, face_scores, face_landmarks_5 | |
def detect_with_yoloface(vision_frame : VisionFrame, face_detector_size : str) -> Tuple[List[BoundingBox], List[Score], List[FaceLandmark5]]: | |
face_detector = get_inference_pool().get('yoloface') | |
face_detector_width, face_detector_height = unpack_resolution(face_detector_size) | |
temp_vision_frame = resize_frame_resolution(vision_frame, (face_detector_width, face_detector_height)) | |
ratio_height = vision_frame.shape[0] / temp_vision_frame.shape[0] | |
ratio_width = vision_frame.shape[1] / temp_vision_frame.shape[1] | |
bounding_boxes = [] | |
face_scores = [] | |
face_landmarks_5 = [] | |
detect_vision_frame = prepare_detect_frame(temp_vision_frame, face_detector_size) | |
with thread_semaphore(): | |
detections = face_detector.run(None, | |
{ | |
'input': detect_vision_frame | |
}) | |
detections = numpy.squeeze(detections).T | |
bounding_box_raw, score_raw, face_landmark_5_raw = numpy.split(detections, [ 4, 5 ], axis = 1) | |
keep_indices = numpy.where(score_raw > state_manager.get_item('face_detector_score'))[0] | |
if numpy.any(keep_indices): | |
bounding_box_raw, face_landmark_5_raw, score_raw = bounding_box_raw[keep_indices], face_landmark_5_raw[keep_indices], score_raw[keep_indices] | |
for bounding_box in bounding_box_raw: | |
bounding_boxes.append(numpy.array( | |
[ | |
(bounding_box[0] - bounding_box[2] / 2) * ratio_width, | |
(bounding_box[1] - bounding_box[3] / 2) * ratio_height, | |
(bounding_box[0] + bounding_box[2] / 2) * ratio_width, | |
(bounding_box[1] + bounding_box[3] / 2) * ratio_height, | |
])) | |
face_scores = score_raw.ravel().tolist() | |
face_landmark_5_raw[:, 0::3] = (face_landmark_5_raw[:, 0::3]) * ratio_width | |
face_landmark_5_raw[:, 1::3] = (face_landmark_5_raw[:, 1::3]) * ratio_height | |
for face_landmark_5 in face_landmark_5_raw: | |
face_landmarks_5.append(numpy.array(face_landmark_5.reshape(-1, 3)[:, :2])) | |
return bounding_boxes, face_scores, face_landmarks_5 | |
def prepare_detect_frame(temp_vision_frame : VisionFrame, face_detector_size : str) -> VisionFrame: | |
face_detector_width, face_detector_height = unpack_resolution(face_detector_size) | |
detect_vision_frame = numpy.zeros((face_detector_height, face_detector_width, 3)) | |
detect_vision_frame[:temp_vision_frame.shape[0], :temp_vision_frame.shape[1], :] = temp_vision_frame | |
detect_vision_frame = (detect_vision_frame - 127.5) / 128.0 | |
detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) | |
return detect_vision_frame | |