facetest / facefusion /face_helper.py
LULDev's picture
Upload folder using huggingface_hub
a1da63c verified
from functools import lru_cache
from typing import List, Sequence, Tuple
import cv2
import numpy
from cv2.typing import Size
from facefusion.typing import Anchors, Angle, BoundingBox, Distance, FaceDetectorModel, FaceLandmark5, FaceLandmark68, Mask, Matrix, Points, Scale, Score, Translation, VisionFrame, WarpTemplate, WarpTemplateSet
WARP_TEMPLATES : WarpTemplateSet =\
{
'arcface_112_v1': numpy.array(
[
[ 0.35473214, 0.45658929 ],
[ 0.64526786, 0.45658929 ],
[ 0.50000000, 0.61154464 ],
[ 0.37913393, 0.77687500 ],
[ 0.62086607, 0.77687500 ]
]),
'arcface_112_v2': numpy.array(
[
[ 0.34191607, 0.46157411 ],
[ 0.65653393, 0.45983393 ],
[ 0.50022500, 0.64050536 ],
[ 0.37097589, 0.82469196 ],
[ 0.63151696, 0.82325089 ]
]),
'arcface_128_v2': numpy.array(
[
[ 0.36167656, 0.40387734 ],
[ 0.63696719, 0.40235469 ],
[ 0.50019687, 0.56044219 ],
[ 0.38710391, 0.72160547 ],
[ 0.61507734, 0.72034453 ]
]),
'ffhq_512': numpy.array(
[
[ 0.37691676, 0.46864664 ],
[ 0.62285697, 0.46912813 ],
[ 0.50123859, 0.61331904 ],
[ 0.39308822, 0.72541100 ],
[ 0.61150205, 0.72490465 ]
])
}
def estimate_matrix_by_face_landmark_5(face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Matrix:
normed_warp_template = WARP_TEMPLATES.get(warp_template) * crop_size
affine_matrix = cv2.estimateAffinePartial2D(face_landmark_5, normed_warp_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0]
return affine_matrix
def warp_face_by_face_landmark_5(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, warp_template, crop_size)
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA)
return crop_vision_frame, affine_matrix
def warp_face_by_bounding_box(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
source_points = numpy.array([ [ bounding_box[0], bounding_box[1] ], [bounding_box[2], bounding_box[1] ], [ bounding_box[0], bounding_box[3] ] ]).astype(numpy.float32)
target_points = numpy.array([ [ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ] ]).astype(numpy.float32)
affine_matrix = cv2.getAffineTransform(source_points, target_points)
if bounding_box[2] - bounding_box[0] > crop_size[0] or bounding_box[3] - bounding_box[1] > crop_size[1]:
interpolation_method = cv2.INTER_AREA
else:
interpolation_method = cv2.INTER_LINEAR
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, flags = interpolation_method)
return crop_vision_frame, affine_matrix
def warp_face_by_translation(temp_vision_frame : VisionFrame, translation : Translation, scale : float, crop_size : Size) -> Tuple[VisionFrame, Matrix]:
affine_matrix = numpy.array([ [ scale, 0, translation[0] ], [ 0, scale, translation[1] ] ])
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size)
return crop_vision_frame, affine_matrix
def paste_back(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame, crop_mask : Mask, affine_matrix : Matrix) -> VisionFrame:
inverse_matrix = cv2.invertAffineTransform(affine_matrix)
temp_size = temp_vision_frame.shape[:2][::-1]
inverse_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_size).clip(0, 1)
inverse_vision_frame = cv2.warpAffine(crop_vision_frame, inverse_matrix, temp_size, borderMode = cv2.BORDER_REPLICATE)
paste_vision_frame = temp_vision_frame.copy()
paste_vision_frame[:, :, 0] = inverse_mask * inverse_vision_frame[:, :, 0] + (1 - inverse_mask) * temp_vision_frame[:, :, 0]
paste_vision_frame[:, :, 1] = inverse_mask * inverse_vision_frame[:, :, 1] + (1 - inverse_mask) * temp_vision_frame[:, :, 1]
paste_vision_frame[:, :, 2] = inverse_mask * inverse_vision_frame[:, :, 2] + (1 - inverse_mask) * temp_vision_frame[:, :, 2]
return paste_vision_frame
@lru_cache(maxsize = None)
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> Anchors:
y, x = numpy.mgrid[:stride_height, :stride_width][::-1]
anchors = numpy.stack((y, x), axis = -1)
anchors = (anchors * feature_stride).reshape((-1, 2))
anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2))
return anchors
def create_rotated_matrix_and_size(angle : Angle, size : Size) -> Tuple[Matrix, Size]:
rotated_matrix = cv2.getRotationMatrix2D((size[0] / 2, size[1] / 2), angle, 1)
rotated_size = numpy.dot(numpy.abs(rotated_matrix[:, :2]), size)
rotated_matrix[:, -1] += (rotated_size - size) * 0.5 #type:ignore[misc]
rotated_size = int(rotated_size[0]), int(rotated_size[1])
return rotated_matrix, rotated_size
def create_bounding_box(face_landmark_68 : FaceLandmark68) -> BoundingBox:
min_x, min_y = numpy.min(face_landmark_68, axis = 0)
max_x, max_y = numpy.max(face_landmark_68, axis = 0)
bounding_box = normalize_bounding_box(numpy.array([ min_x, min_y, max_x, max_y ]))
return bounding_box
def normalize_bounding_box(bounding_box : BoundingBox) -> BoundingBox:
x1, y1, x2, y2 = bounding_box
x1, x2 = sorted([ x1, x2 ])
y1, y2 = sorted([ y1, y2 ])
return numpy.array([ x1, y1, x2, y2 ])
def transform_points(points : Points, matrix : Matrix) -> Points:
points = points.reshape(-1, 1, 2)
points = cv2.transform(points, matrix) #type:ignore[assignment]
points = points.reshape(-1, 2)
return points
def transform_bounding_box(bounding_box : BoundingBox, matrix : Matrix) -> BoundingBox:
points = numpy.array(
[
[ bounding_box[0], bounding_box[1] ],
[ bounding_box[2], bounding_box[1] ],
[ bounding_box[2], bounding_box[3] ],
[ bounding_box[0], bounding_box[3] ]
])
points = transform_points(points, matrix)
x1, y1 = numpy.min(points, axis = 0)
x2, y2 = numpy.max(points, axis = 0)
return normalize_bounding_box(numpy.array([ x1, y1, x2, y2 ]))
def distance_to_bounding_box(points : Points, distance : Distance) -> BoundingBox:
x1 = points[:, 0] - distance[:, 0]
y1 = points[:, 1] - distance[:, 1]
x2 = points[:, 0] + distance[:, 2]
y2 = points[:, 1] + distance[:, 3]
bounding_box = numpy.column_stack([ x1, y1, x2, y2 ])
return bounding_box
def distance_to_face_landmark_5(points : Points, distance : Distance) -> FaceLandmark5:
x = points[:, 0::2] + distance[:, 0::2]
y = points[:, 1::2] + distance[:, 1::2]
face_landmark_5 = numpy.stack((x, y), axis = -1)
return face_landmark_5
def scale_face_landmark_5(face_landmark_5 : FaceLandmark5, scale : Scale) -> FaceLandmark5:
face_landmark_5_scale = face_landmark_5 - face_landmark_5[2]
face_landmark_5_scale *= scale
face_landmark_5_scale += face_landmark_5[2]
return face_landmark_5_scale
def convert_to_face_landmark_5(face_landmark_68 : FaceLandmark68) -> FaceLandmark5:
face_landmark_5 = numpy.array(
[
numpy.mean(face_landmark_68[36:42], axis = 0),
numpy.mean(face_landmark_68[42:48], axis = 0),
face_landmark_68[30],
face_landmark_68[48],
face_landmark_68[54]
])
return face_landmark_5
def estimate_face_angle(face_landmark_68 : FaceLandmark68) -> Angle:
x1, y1 = face_landmark_68[0]
x2, y2 = face_landmark_68[16]
theta = numpy.arctan2(y2 - y1, x2 - x1)
theta = numpy.degrees(theta) % 360
angles = numpy.linspace(0, 360, 5)
index = numpy.argmin(numpy.abs(angles - theta))
face_angle = int(angles[index] % 360)
return face_angle
def apply_nms(bounding_boxes : List[BoundingBox], face_scores : List[Score], score_threshold : float, nms_threshold : float) -> Sequence[int]:
normed_bounding_boxes = [ (x1, y1, x2 - x1, y2 - y1) for (x1, y1, x2, y2) in bounding_boxes ]
keep_indices = cv2.dnn.NMSBoxes(normed_bounding_boxes, face_scores, score_threshold = score_threshold, nms_threshold = nms_threshold)
return keep_indices
def get_nms_threshold(face_detector_model : FaceDetectorModel, face_detector_angles : List[Angle]) -> float:
if face_detector_model == 'many':
return 0.1
if len(face_detector_angles) == 2:
return 0.3
if len(face_detector_angles) == 3:
return 0.2
if len(face_detector_angles) == 4:
return 0.1
return 0.4
def merge_matrix(matrices : List[Matrix]) -> Matrix:
merged_matrix = numpy.vstack([ matrices[0], [ 0, 0, 1 ] ])
for matrix in matrices[1:]:
matrix = numpy.vstack([ matrix, [ 0, 0, 1 ] ])
merged_matrix = numpy.dot(merged_matrix, matrix)
return merged_matrix[:2, :]