Spaces:
Build error
Build error
from functools import lru_cache | |
from typing import List, Sequence, Tuple | |
import cv2 | |
import numpy | |
from cv2.typing import Size | |
from facefusion.typing import Anchors, Angle, BoundingBox, Distance, FaceDetectorModel, FaceLandmark5, FaceLandmark68, Mask, Matrix, Points, Scale, Score, Translation, VisionFrame, WarpTemplate, WarpTemplateSet | |
WARP_TEMPLATES : WarpTemplateSet =\ | |
{ | |
'arcface_112_v1': numpy.array( | |
[ | |
[ 0.35473214, 0.45658929 ], | |
[ 0.64526786, 0.45658929 ], | |
[ 0.50000000, 0.61154464 ], | |
[ 0.37913393, 0.77687500 ], | |
[ 0.62086607, 0.77687500 ] | |
]), | |
'arcface_112_v2': numpy.array( | |
[ | |
[ 0.34191607, 0.46157411 ], | |
[ 0.65653393, 0.45983393 ], | |
[ 0.50022500, 0.64050536 ], | |
[ 0.37097589, 0.82469196 ], | |
[ 0.63151696, 0.82325089 ] | |
]), | |
'arcface_128_v2': numpy.array( | |
[ | |
[ 0.36167656, 0.40387734 ], | |
[ 0.63696719, 0.40235469 ], | |
[ 0.50019687, 0.56044219 ], | |
[ 0.38710391, 0.72160547 ], | |
[ 0.61507734, 0.72034453 ] | |
]), | |
'ffhq_512': numpy.array( | |
[ | |
[ 0.37691676, 0.46864664 ], | |
[ 0.62285697, 0.46912813 ], | |
[ 0.50123859, 0.61331904 ], | |
[ 0.39308822, 0.72541100 ], | |
[ 0.61150205, 0.72490465 ] | |
]) | |
} | |
def estimate_matrix_by_face_landmark_5(face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Matrix: | |
normed_warp_template = WARP_TEMPLATES.get(warp_template) * crop_size | |
affine_matrix = cv2.estimateAffinePartial2D(face_landmark_5, normed_warp_template, method = cv2.RANSAC, ransacReprojThreshold = 100)[0] | |
return affine_matrix | |
def warp_face_by_face_landmark_5(temp_vision_frame : VisionFrame, face_landmark_5 : FaceLandmark5, warp_template : WarpTemplate, crop_size : Size) -> Tuple[VisionFrame, Matrix]: | |
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, warp_template, crop_size) | |
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, borderMode = cv2.BORDER_REPLICATE, flags = cv2.INTER_AREA) | |
return crop_vision_frame, affine_matrix | |
def warp_face_by_bounding_box(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, crop_size : Size) -> Tuple[VisionFrame, Matrix]: | |
source_points = numpy.array([ [ bounding_box[0], bounding_box[1] ], [bounding_box[2], bounding_box[1] ], [ bounding_box[0], bounding_box[3] ] ]).astype(numpy.float32) | |
target_points = numpy.array([ [ 0, 0 ], [ crop_size[0], 0 ], [ 0, crop_size[1] ] ]).astype(numpy.float32) | |
affine_matrix = cv2.getAffineTransform(source_points, target_points) | |
if bounding_box[2] - bounding_box[0] > crop_size[0] or bounding_box[3] - bounding_box[1] > crop_size[1]: | |
interpolation_method = cv2.INTER_AREA | |
else: | |
interpolation_method = cv2.INTER_LINEAR | |
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size, flags = interpolation_method) | |
return crop_vision_frame, affine_matrix | |
def warp_face_by_translation(temp_vision_frame : VisionFrame, translation : Translation, scale : float, crop_size : Size) -> Tuple[VisionFrame, Matrix]: | |
affine_matrix = numpy.array([ [ scale, 0, translation[0] ], [ 0, scale, translation[1] ] ]) | |
crop_vision_frame = cv2.warpAffine(temp_vision_frame, affine_matrix, crop_size) | |
return crop_vision_frame, affine_matrix | |
def paste_back(temp_vision_frame : VisionFrame, crop_vision_frame : VisionFrame, crop_mask : Mask, affine_matrix : Matrix) -> VisionFrame: | |
inverse_matrix = cv2.invertAffineTransform(affine_matrix) | |
temp_size = temp_vision_frame.shape[:2][::-1] | |
inverse_mask = cv2.warpAffine(crop_mask, inverse_matrix, temp_size).clip(0, 1) | |
inverse_vision_frame = cv2.warpAffine(crop_vision_frame, inverse_matrix, temp_size, borderMode = cv2.BORDER_REPLICATE) | |
paste_vision_frame = temp_vision_frame.copy() | |
paste_vision_frame[:, :, 0] = inverse_mask * inverse_vision_frame[:, :, 0] + (1 - inverse_mask) * temp_vision_frame[:, :, 0] | |
paste_vision_frame[:, :, 1] = inverse_mask * inverse_vision_frame[:, :, 1] + (1 - inverse_mask) * temp_vision_frame[:, :, 1] | |
paste_vision_frame[:, :, 2] = inverse_mask * inverse_vision_frame[:, :, 2] + (1 - inverse_mask) * temp_vision_frame[:, :, 2] | |
return paste_vision_frame | |
def create_static_anchors(feature_stride : int, anchor_total : int, stride_height : int, stride_width : int) -> Anchors: | |
y, x = numpy.mgrid[:stride_height, :stride_width][::-1] | |
anchors = numpy.stack((y, x), axis = -1) | |
anchors = (anchors * feature_stride).reshape((-1, 2)) | |
anchors = numpy.stack([ anchors ] * anchor_total, axis = 1).reshape((-1, 2)) | |
return anchors | |
def create_rotated_matrix_and_size(angle : Angle, size : Size) -> Tuple[Matrix, Size]: | |
rotated_matrix = cv2.getRotationMatrix2D((size[0] / 2, size[1] / 2), angle, 1) | |
rotated_size = numpy.dot(numpy.abs(rotated_matrix[:, :2]), size) | |
rotated_matrix[:, -1] += (rotated_size - size) * 0.5 #type:ignore[misc] | |
rotated_size = int(rotated_size[0]), int(rotated_size[1]) | |
return rotated_matrix, rotated_size | |
def create_bounding_box(face_landmark_68 : FaceLandmark68) -> BoundingBox: | |
min_x, min_y = numpy.min(face_landmark_68, axis = 0) | |
max_x, max_y = numpy.max(face_landmark_68, axis = 0) | |
bounding_box = normalize_bounding_box(numpy.array([ min_x, min_y, max_x, max_y ])) | |
return bounding_box | |
def normalize_bounding_box(bounding_box : BoundingBox) -> BoundingBox: | |
x1, y1, x2, y2 = bounding_box | |
x1, x2 = sorted([ x1, x2 ]) | |
y1, y2 = sorted([ y1, y2 ]) | |
return numpy.array([ x1, y1, x2, y2 ]) | |
def transform_points(points : Points, matrix : Matrix) -> Points: | |
points = points.reshape(-1, 1, 2) | |
points = cv2.transform(points, matrix) #type:ignore[assignment] | |
points = points.reshape(-1, 2) | |
return points | |
def transform_bounding_box(bounding_box : BoundingBox, matrix : Matrix) -> BoundingBox: | |
points = numpy.array( | |
[ | |
[ bounding_box[0], bounding_box[1] ], | |
[ bounding_box[2], bounding_box[1] ], | |
[ bounding_box[2], bounding_box[3] ], | |
[ bounding_box[0], bounding_box[3] ] | |
]) | |
points = transform_points(points, matrix) | |
x1, y1 = numpy.min(points, axis = 0) | |
x2, y2 = numpy.max(points, axis = 0) | |
return normalize_bounding_box(numpy.array([ x1, y1, x2, y2 ])) | |
def distance_to_bounding_box(points : Points, distance : Distance) -> BoundingBox: | |
x1 = points[:, 0] - distance[:, 0] | |
y1 = points[:, 1] - distance[:, 1] | |
x2 = points[:, 0] + distance[:, 2] | |
y2 = points[:, 1] + distance[:, 3] | |
bounding_box = numpy.column_stack([ x1, y1, x2, y2 ]) | |
return bounding_box | |
def distance_to_face_landmark_5(points : Points, distance : Distance) -> FaceLandmark5: | |
x = points[:, 0::2] + distance[:, 0::2] | |
y = points[:, 1::2] + distance[:, 1::2] | |
face_landmark_5 = numpy.stack((x, y), axis = -1) | |
return face_landmark_5 | |
def scale_face_landmark_5(face_landmark_5 : FaceLandmark5, scale : Scale) -> FaceLandmark5: | |
face_landmark_5_scale = face_landmark_5 - face_landmark_5[2] | |
face_landmark_5_scale *= scale | |
face_landmark_5_scale += face_landmark_5[2] | |
return face_landmark_5_scale | |
def convert_to_face_landmark_5(face_landmark_68 : FaceLandmark68) -> FaceLandmark5: | |
face_landmark_5 = numpy.array( | |
[ | |
numpy.mean(face_landmark_68[36:42], axis = 0), | |
numpy.mean(face_landmark_68[42:48], axis = 0), | |
face_landmark_68[30], | |
face_landmark_68[48], | |
face_landmark_68[54] | |
]) | |
return face_landmark_5 | |
def estimate_face_angle(face_landmark_68 : FaceLandmark68) -> Angle: | |
x1, y1 = face_landmark_68[0] | |
x2, y2 = face_landmark_68[16] | |
theta = numpy.arctan2(y2 - y1, x2 - x1) | |
theta = numpy.degrees(theta) % 360 | |
angles = numpy.linspace(0, 360, 5) | |
index = numpy.argmin(numpy.abs(angles - theta)) | |
face_angle = int(angles[index] % 360) | |
return face_angle | |
def apply_nms(bounding_boxes : List[BoundingBox], face_scores : List[Score], score_threshold : float, nms_threshold : float) -> Sequence[int]: | |
normed_bounding_boxes = [ (x1, y1, x2 - x1, y2 - y1) for (x1, y1, x2, y2) in bounding_boxes ] | |
keep_indices = cv2.dnn.NMSBoxes(normed_bounding_boxes, face_scores, score_threshold = score_threshold, nms_threshold = nms_threshold) | |
return keep_indices | |
def get_nms_threshold(face_detector_model : FaceDetectorModel, face_detector_angles : List[Angle]) -> float: | |
if face_detector_model == 'many': | |
return 0.1 | |
if len(face_detector_angles) == 2: | |
return 0.3 | |
if len(face_detector_angles) == 3: | |
return 0.2 | |
if len(face_detector_angles) == 4: | |
return 0.1 | |
return 0.4 | |
def merge_matrix(matrices : List[Matrix]) -> Matrix: | |
merged_matrix = numpy.vstack([ matrices[0], [ 0, 0, 1 ] ]) | |
for matrix in matrices[1:]: | |
matrix = numpy.vstack([ matrix, [ 0, 0, 1 ] ]) | |
merged_matrix = numpy.dot(merged_matrix, matrix) | |
return merged_matrix[:2, :] | |