Spaces:
Build error
Build error
from typing import Tuple | |
import cv2 | |
import numpy | |
from facefusion import inference_manager, state_manager | |
from facefusion.download import conditional_download_hashes, conditional_download_sources | |
from facefusion.face_helper import create_rotated_matrix_and_size, estimate_matrix_by_face_landmark_5, transform_points, warp_face_by_translation | |
from facefusion.filesystem import resolve_relative_path | |
from facefusion.thread_helper import conditional_thread_semaphore | |
from facefusion.typing import Angle, BoundingBox, DownloadSet, FaceLandmark5, FaceLandmark68, InferencePool, ModelSet, Score, VisionFrame | |
MODEL_SET : ModelSet =\ | |
{ | |
'2dfan4': | |
{ | |
'hashes': | |
{ | |
'2dfan4': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/2dfan4.hash', | |
'path': resolve_relative_path('../.assets/models/2dfan4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'2dfan4': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/2dfan4.onnx', | |
'path': resolve_relative_path('../.assets/models/2dfan4.onnx') | |
} | |
} | |
}, | |
'peppa_wutz': | |
{ | |
'hashes': | |
{ | |
'peppa_wutz': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/peppa_wutz.hash', | |
'path': resolve_relative_path('../.assets/models/peppa_wutz.hash') | |
} | |
}, | |
'sources': | |
{ | |
'peppa_wutz': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/peppa_wutz.onnx', | |
'path': resolve_relative_path('../.assets/models/peppa_wutz.onnx') | |
} | |
} | |
}, | |
'face_landmarker_68_5': | |
{ | |
'hashes': | |
{ | |
'face_landmarker_68_5': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/face_landmarker_68_5.hash', | |
'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.hash') | |
} | |
}, | |
'sources': | |
{ | |
'face_landmarker_68_5': | |
{ | |
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/face_landmarker_68_5.onnx', | |
'path': resolve_relative_path('../.assets/models/face_landmarker_68_5.onnx') | |
} | |
} | |
} | |
} | |
def get_inference_pool() -> InferencePool: | |
_, model_sources = collect_model_downloads() | |
return inference_manager.get_inference_pool(__name__, model_sources) | |
def clear_inference_pool() -> None: | |
inference_manager.clear_inference_pool(__name__) | |
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]: | |
model_hashes =\ | |
{ | |
'face_landmarker_68_5': MODEL_SET.get('face_landmarker_68_5').get('hashes').get('face_landmarker_68_5') | |
} | |
model_sources =\ | |
{ | |
'face_landmarker_68_5': MODEL_SET.get('face_landmarker_68_5').get('sources').get('face_landmarker_68_5') | |
} | |
if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]: | |
model_hashes['2dfan4'] = MODEL_SET.get('2dfan4').get('hashes').get('2dfan4') | |
model_sources['2dfan4'] = MODEL_SET.get('2dfan4').get('sources').get('2dfan4') | |
if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]: | |
model_hashes['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('hashes').get('peppa_wutz') | |
model_sources['peppa_wutz'] = MODEL_SET.get('peppa_wutz').get('sources').get('peppa_wutz') | |
return model_hashes, model_sources | |
def pre_check() -> bool: | |
download_directory_path = resolve_relative_path('../.assets/models') | |
model_hashes, model_sources = collect_model_downloads() | |
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources) | |
def detect_face_landmarks(vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]: | |
face_landmark_2dfan4 = None | |
face_landmark_peppa_wutz = None | |
face_landmark_score_2dfan4 = 0.0 | |
face_landmark_score_peppa_wutz = 0.0 | |
if state_manager.get_item('face_landmarker_model') in [ 'many', '2dfan4' ]: | |
face_landmark_2dfan4, face_landmark_score_2dfan4 = detect_with_2dfan4(vision_frame, bounding_box, face_angle) | |
if state_manager.get_item('face_landmarker_model') in [ 'many', 'peppa_wutz' ]: | |
face_landmark_peppa_wutz, face_landmark_score_peppa_wutz = detect_with_peppa_wutz(vision_frame, bounding_box, face_angle) | |
if face_landmark_score_2dfan4 > face_landmark_score_peppa_wutz: | |
return face_landmark_2dfan4, face_landmark_score_2dfan4 | |
return face_landmark_peppa_wutz, face_landmark_score_peppa_wutz | |
def detect_with_2dfan4(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]: | |
face_landmarker = get_inference_pool().get('2dfan4') | |
scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None) | |
translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5 | |
rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, (256, 256)) | |
crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256)) | |
crop_vision_frame = cv2.warpAffine(crop_vision_frame, rotated_matrix, rotated_size) | |
crop_vision_frame = conditional_optimize_contrast(crop_vision_frame) | |
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0 | |
with conditional_thread_semaphore(): | |
face_landmark_68, face_heatmap = face_landmarker.run(None, | |
{ | |
'input': [ crop_vision_frame ] | |
}) | |
face_landmark_68 = face_landmark_68[:, :, :2][0] / 64 * 256 | |
face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(rotated_matrix)) | |
face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(affine_matrix)) | |
face_landmark_score_68 = numpy.amax(face_heatmap, axis = (2, 3)) | |
face_landmark_score_68 = numpy.mean(face_landmark_score_68) | |
return face_landmark_68, face_landmark_score_68 | |
def detect_with_peppa_wutz(temp_vision_frame : VisionFrame, bounding_box : BoundingBox, face_angle : Angle) -> Tuple[FaceLandmark68, Score]: | |
face_landmarker = get_inference_pool().get('peppa_wutz') | |
scale = 195 / numpy.subtract(bounding_box[2:], bounding_box[:2]).max().clip(1, None) | |
translation = (256 - numpy.add(bounding_box[2:], bounding_box[:2]) * scale) * 0.5 | |
rotated_matrix, rotated_size = create_rotated_matrix_and_size(face_angle, (256, 256)) | |
crop_vision_frame, affine_matrix = warp_face_by_translation(temp_vision_frame, translation, scale, (256, 256)) | |
crop_vision_frame = cv2.warpAffine(crop_vision_frame, rotated_matrix, rotated_size) | |
crop_vision_frame = conditional_optimize_contrast(crop_vision_frame) | |
crop_vision_frame = crop_vision_frame.transpose(2, 0, 1).astype(numpy.float32) / 255.0 | |
crop_vision_frame = numpy.expand_dims(crop_vision_frame, axis = 0) | |
with conditional_thread_semaphore(): | |
prediction = face_landmarker.run(None, | |
{ | |
'input': crop_vision_frame | |
})[0] | |
face_landmark_68 = prediction.reshape(-1, 3)[:, :2] / 64 * 256 | |
face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(rotated_matrix)) | |
face_landmark_68 = transform_points(face_landmark_68, cv2.invertAffineTransform(affine_matrix)) | |
face_landmark_score_68 = prediction.reshape(-1, 3)[:, 2].mean() | |
return face_landmark_68, face_landmark_score_68 | |
def conditional_optimize_contrast(crop_vision_frame : VisionFrame) -> VisionFrame: | |
crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_RGB2Lab) | |
if numpy.mean(crop_vision_frame[:, :, 0]) < 30: # type:ignore[arg-type] | |
crop_vision_frame[:, :, 0] = cv2.createCLAHE(clipLimit = 2).apply(crop_vision_frame[:, :, 0]) | |
crop_vision_frame = cv2.cvtColor(crop_vision_frame, cv2.COLOR_Lab2RGB) | |
return crop_vision_frame | |
def estimate_face_landmark_68_5(face_landmark_5 : FaceLandmark5) -> FaceLandmark68: | |
face_landmarker = get_inference_pool().get('face_landmarker_68_5') | |
affine_matrix = estimate_matrix_by_face_landmark_5(face_landmark_5, 'ffhq_512', (1, 1)) | |
face_landmark_5 = cv2.transform(face_landmark_5.reshape(1, -1, 2), affine_matrix).reshape(-1, 2) | |
with conditional_thread_semaphore(): | |
face_landmark_68_5 = face_landmarker.run(None, | |
{ | |
'input': [ face_landmark_5 ] | |
})[0][0] | |
face_landmark_68_5 = cv2.transform(face_landmark_68_5.reshape(1, -1, 2), cv2.invertAffineTransform(affine_matrix)).reshape(-1, 2) | |
return face_landmark_68_5 | |