facetest / facefusion /processors /modules /expression_restorer.py
LULDev's picture
Upload folder using huggingface_hub
a1da63c verified
from argparse import ArgumentParser
from typing import List
import cv2
import numpy
import scipy
import facefusion.jobs.job_manager
import facefusion.jobs.job_store
import facefusion.processors.core as processors
from facefusion import config, content_analyser, face_classifier, face_detector, face_landmarker, face_masker, face_recognizer, inference_manager, logger, process_manager, state_manager, wording
from facefusion.common_helper import create_int_metavar, map_float
from facefusion.download import conditional_download_hashes, conditional_download_sources
from facefusion.face_analyser import get_many_faces, get_one_face
from facefusion.face_helper import paste_back, warp_face_by_face_landmark_5
from facefusion.face_masker import create_occlusion_mask, create_static_box_mask
from facefusion.face_selector import find_similar_faces, sort_and_filter_faces
from facefusion.face_store import get_reference_faces
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension
from facefusion.processors import choices as processors_choices
from facefusion.processors.typing import ExpressionRestorerInputs
from facefusion.program_helper import find_argument_group
from facefusion.thread_helper import thread_semaphore
from facefusion.typing import Args, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame
from facefusion.vision import get_video_frame, read_image, read_static_image, write_image
MODEL_SET : ModelSet =\
{
'live_portrait':
{
'hashes':
{
'feature_extractor':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.hash',
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.hash')
},
'motion_extractor':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.hash',
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.hash')
},
'generator':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.hash',
'path': resolve_relative_path('../.assets/models/live_portrait_generator.hash')
}
},
'sources':
{
'feature_extractor':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_feature_extractor.onnx',
'path': resolve_relative_path('../.assets/models/live_portrait_feature_extractor.onnx')
},
'motion_extractor':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_motion_extractor.onnx',
'path': resolve_relative_path('../.assets/models/live_portrait_motion_extractor.onnx')
},
'generator':
{
'url': 'https://github.com/facefusion/facefusion-assets/releases/download/models-3.0.0/live_portrait_generator.onnx',
'path': resolve_relative_path('../.assets/models/live_portrait_generator.onnx')
}
},
'template': 'arcface_128_v2',
'size': (512, 512)
}
}
def get_inference_pool() -> InferencePool:
model_sources = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_sources)
def clear_inference_pool() -> None:
inference_manager.clear_inference_pool(__name__)
def get_model_options() -> ModelOptions:
return MODEL_SET[state_manager.get_item('expression_restorer_model')]
def register_args(program : ArgumentParser) -> None:
group_processors = find_argument_group(program, 'processors')
if group_processors:
group_processors.add_argument('--expression-restorer-model', help = wording.get('help.expression_restorer_model'), default = config.get_str_value('processors.expression_restorer_model', 'live_portrait'), choices = processors_choices.expression_restorer_models)
group_processors.add_argument('--expression-restorer-factor', help = wording.get('help.expression_restorer_factor'), type = int, default = config.get_int_value('processors.expression_restorer_factor', '100'), choices = processors_choices.expression_restorer_factor_range, metavar = create_int_metavar(processors_choices.expression_restorer_factor_range))
facefusion.jobs.job_store.register_step_keys([ 'expression_restorer_model','expression_restorer_factor' ])
def apply_args(args : Args) -> None:
state_manager.init_item('expression_restorer_model', args.get('expression_restorer_model'))
state_manager.init_item('expression_restorer_factor', args.get('expression_restorer_factor'))
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../.assets/models')
model_hashes = get_model_options().get('hashes')
model_sources = get_model_options().get('sources')
return conditional_download_hashes(download_directory_path, model_hashes) and conditional_download_sources(download_directory_path, model_sources)
def pre_process(mode : ProcessMode) -> bool:
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')):
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not in_directory(state_manager.get_item('output_path')):
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__.upper())
return False
if mode == 'output' and not same_file_extension([ state_manager.get_item('target_path'), state_manager.get_item('output_path') ]):
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__.upper())
return False
return True
def post_process() -> None:
read_static_image.cache_clear()
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]:
clear_inference_pool()
if state_manager.get_item('video_memory_strategy') == 'strict':
content_analyser.clear_inference_pool()
face_classifier.clear_inference_pool()
face_detector.clear_inference_pool()
face_landmarker.clear_inference_pool()
face_masker.clear_inference_pool()
face_recognizer.clear_inference_pool()
def restore_expression(source_vision_frame : VisionFrame, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
model_template = get_model_options().get('template')
model_size = get_model_options().get('size')
expression_restorer_factor = map_float(float(state_manager.get_item('expression_restorer_factor')), 0, 200, 0, 2)
source_vision_frame = cv2.resize(source_vision_frame, temp_vision_frame.shape[:2][::-1])
source_crop_vision_frame, _ = warp_face_by_face_landmark_5(source_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
target_crop_vision_frame, affine_matrix = warp_face_by_face_landmark_5(temp_vision_frame, target_face.landmark_set.get('5/68'), model_template, model_size)
box_mask = create_static_box_mask(target_crop_vision_frame.shape[:2][::-1], state_manager.get_item('face_mask_blur'), (0, 0, 0, 0))
crop_masks =\
[
box_mask
]
if 'occlusion' in state_manager.get_item('face_mask_types'):
occlusion_mask = create_occlusion_mask(target_crop_vision_frame)
crop_masks.append(occlusion_mask)
source_crop_vision_frame = prepare_crop_frame(source_crop_vision_frame)
target_crop_vision_frame = prepare_crop_frame(target_crop_vision_frame)
target_crop_vision_frame = apply_restore(source_crop_vision_frame, target_crop_vision_frame, expression_restorer_factor)
target_crop_vision_frame = normalize_crop_frame(target_crop_vision_frame)
crop_mask = numpy.minimum.reduce(crop_masks).clip(0, 1)
temp_vision_frame = paste_back(temp_vision_frame, target_crop_vision_frame, crop_mask, affine_matrix)
return temp_vision_frame
def apply_restore(source_crop_vision_frame : VisionFrame, target_crop_vision_frame : VisionFrame, expression_restorer_factor : float) -> VisionFrame:
feature_extractor = get_inference_pool().get('feature_extractor')
motion_extractor = get_inference_pool().get('motion_extractor')
generator = get_inference_pool().get('generator')
with thread_semaphore():
feature_volume = feature_extractor.run(None,
{
'input': target_crop_vision_frame
})[0]
with thread_semaphore():
source_expression = motion_extractor.run(None,
{
'input': source_crop_vision_frame
})[5]
with thread_semaphore():
target_pitch, target_yaw, target_roll, target_scale, target_translation, target_expression, target_motion_points = motion_extractor.run(None,
{
'input': target_crop_vision_frame
})
target_rotation_matrix = scipy.spatial.transform.Rotation.from_euler('xyz', [ target_pitch, target_yaw, target_roll ], degrees = True).as_matrix()
target_rotation_matrix = target_rotation_matrix.T.astype(numpy.float32)
target_motion_points_transform = target_scale * (target_motion_points @ target_rotation_matrix + target_expression) + target_translation
expression = source_expression * expression_restorer_factor + target_expression * (1 - expression_restorer_factor)
expression[:, [ 0, 4, 5, 8, 9 ]] = target_expression[:, [ 0, 4, 5, 8, 9 ]]
source_motion_points = target_scale * (target_motion_points @ target_rotation_matrix + expression) + target_translation
with thread_semaphore():
crop_vision_frame = generator.run(None,
{
'feature_volume': feature_volume,
'target': target_motion_points_transform,
'source': source_motion_points
})[0][0]
return crop_vision_frame
def prepare_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = cv2.resize(crop_vision_frame, (256, 256), interpolation = cv2.INTER_AREA)
crop_vision_frame = crop_vision_frame[:, :, ::-1] / 255.0
crop_vision_frame = numpy.expand_dims(crop_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return crop_vision_frame
def normalize_crop_frame(crop_vision_frame : VisionFrame) -> VisionFrame:
crop_vision_frame = crop_vision_frame.transpose(1, 2, 0).clip(0, 1)
crop_vision_frame = (crop_vision_frame * 255.0)
crop_vision_frame = crop_vision_frame.astype(numpy.uint8)[:, :, ::-1]
return crop_vision_frame
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame:
pass
def process_frame(inputs : ExpressionRestorerInputs) -> VisionFrame:
reference_faces = inputs.get('reference_faces')
source_vision_frame = inputs.get('source_vision_frame')
target_vision_frame = inputs.get('target_vision_frame')
many_faces = sort_and_filter_faces(get_many_faces([ target_vision_frame ]))
if state_manager.get_item('face_selector_mode') == 'many':
if many_faces:
for target_face in many_faces:
target_vision_frame = restore_expression(source_vision_frame, target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'one':
target_face = get_one_face(many_faces)
if target_face:
target_vision_frame = restore_expression(source_vision_frame, target_face, target_vision_frame)
if state_manager.get_item('face_selector_mode') == 'reference':
similar_faces = find_similar_faces(many_faces, reference_faces, state_manager.get_item('reference_face_distance'))
if similar_faces:
for similar_face in similar_faces:
target_vision_frame = restore_expression(source_vision_frame, similar_face, target_vision_frame)
return target_vision_frame
def process_frames(source_path : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
for queue_payload in process_manager.manage(queue_payloads):
frame_number = queue_payload.get('frame_number')
if state_manager.get_item('trim_frame_start'):
frame_number += state_manager.get_item('trim_frame_start')
source_vision_frame = get_video_frame(state_manager.get_item('target_path'), frame_number)
target_vision_path = queue_payload.get('frame_path')
target_vision_frame = read_image(target_vision_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_vision_frame': source_vision_frame,
'target_vision_frame': target_vision_frame
})
write_image(target_vision_path, output_vision_frame)
update_progress(1)
def process_image(source_path : str, target_path : str, output_path : str) -> None:
reference_faces = get_reference_faces() if 'reference' in state_manager.get_item('face_selector_mode') else None
source_vision_frame = read_static_image(state_manager.get_item('target_path'))
target_vision_frame = read_static_image(target_path)
output_vision_frame = process_frame(
{
'reference_faces': reference_faces,
'source_vision_frame': source_vision_frame,
'target_vision_frame': target_vision_frame
})
write_image(output_path, output_vision_frame)
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None:
processors.multi_process_frames(None, temp_frame_paths, process_frames)