File size: 2,909 Bytes
49f65e4 269eef7 49f65e4 a8c5eee 49f65e4 a8c5eee 49f65e4 a8c5eee 49f65e4 c8067b8 d0b54f1 7f5a3aa 70913b7 d0b54f1 e198db2 d0b54f1 b0f7a83 d0b54f1 e198db2 d0b54f1 b0f7a83 d0b54f1 b0f7a83 e198db2 d0b54f1 b54a771 d0b54f1 b0f7a83 d0b54f1 b0f7a83 d0b54f1 7f5a3aa 49f65e4 d911574 9c7d136 0f5662c 49f65e4 269eef7 49f65e4 269eef7 43d4050 269eef7 43d4050 13ab734 49f65e4 43d4050 13ab734 71c3d4c ae52322 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
def inference(image, size):
global model2
global model4
global model8
if image is None:
raise gr.Error("Image not uploaded")
if torch.cuda.is_available():
torch.cuda.empty_cache()
if size == '2x':
try:
result = model2.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
result = model2.predict(image.convert('RGB'))
elif size == '4x':
try:
result = model4.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
result = model2.predict(image.convert('RGB'))
else:
try:
width, height = image.size
if width >= 5000 or height >= 5000:
raise gr.Error("The image is too large.")
result = model8.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
result = model2.predict(image.convert('RGB'))
print(f"Image size ({device}): {size} ... OK")
return result
title = "Face Real ESRGAN UpScale: 2x 4x 8x"
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>"
gr.Interface(inference,
[gr.Image(type="pil"),
gr.Radio(["2x", "4x", "8x"],
type="value",
value="2x",
label="Resolution model")],
gr.Image(type="pil", label="Output", format="png"),
title=title,
description=description,
article=article,
examples=[["groot.jpeg", "2x"]],
allow_flagging="never",
cache_examples="lazy",
delete_cache=(4000, 4000),
).queue(api_open=True).launch(show_error=True, show_api=True)
|