File size: 2,909 Bytes
49f65e4
 
269eef7
49f65e4
 
 
 
a8c5eee
49f65e4
a8c5eee
49f65e4
a8c5eee
49f65e4
 
c8067b8
d0b54f1
 
 
7f5a3aa
 
 
70913b7
 
 
d0b54f1
e198db2
d0b54f1
 
 
b0f7a83
d0b54f1
 
 
e198db2
d0b54f1
 
 
b0f7a83
d0b54f1
 
b0f7a83
e198db2
d0b54f1
b54a771
 
 
d0b54f1
 
b0f7a83
d0b54f1
 
b0f7a83
d0b54f1
7f5a3aa
49f65e4
 
 
d911574
9c7d136
0f5662c
49f65e4
269eef7
49f65e4
269eef7
43d4050
269eef7
43d4050
 
13ab734
49f65e4
 
 
43d4050
 
 
13ab734
71c3d4c
ae52322
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)


def inference(image, size):
    global model2
    global model4
    global model8
    if image is None:
        raise gr.Error("Image not uploaded")
        

    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    
    if size == '2x':
        try:
            result = model2.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model2 = RealESRGAN(device, scale=2)
            model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
            result = model2.predict(image.convert('RGB'))
    elif size == '4x':
        try:
            result = model4.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model4 = RealESRGAN(device, scale=4)
            model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
            result = model2.predict(image.convert('RGB'))
    else:
        try:
            width, height = image.size
            if width >= 5000 or height >= 5000:
                raise gr.Error("The image is too large.")
            result = model8.predict(image.convert('RGB'))
        except torch.cuda.OutOfMemoryError as e:
            print(e)
            model8 = RealESRGAN(device, scale=8)
            model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
            result = model2.predict(image.convert('RGB'))
            
    print(f"Image size ({device}): {size} ... OK")
    return result


title = "Face Real ESRGAN UpScale: 2x 4x 8x"
description = "This is an unofficial demo for Real-ESRGAN. Scales the resolution of a photo. This model shows better results on faces compared to the original version.<br>Telegram BOT: https://t.me/restoration_photo_bot"
article = "<div style='text-align: center;'>Twitter <a href='https://twitter.com/DoEvent' target='_blank'>Max Skobeev</a> | <a href='https://huggingface.co/sberbank-ai/Real-ESRGAN' target='_blank'>Model card</a><div>"


gr.Interface(inference,
    [gr.Image(type="pil"), 
    gr.Radio(["2x", "4x", "8x"], 
    type="value",
    value="2x",
    label="Resolution model")], 
    gr.Image(type="pil", label="Output", format="png"),
    title=title,
    description=description,
    article=article,
    examples=[["groot.jpeg", "2x"]],
    allow_flagging="never",
    cache_examples="lazy",
    delete_cache=(4000, 4000),
    ).queue(api_open=True).launch(show_error=True, show_api=True)