# from sentence_transformers import SentenceTransformer | |
# class GetEmbedding: | |
# def __init__(self,data:list): | |
# self.data = data | |
# def user_query_emb(self,model_name:str = 'paraphrase-MiniLM-L6-v2'): | |
# try: | |
# model = SentenceTransformer(model_name_or_path=model_name) | |
# embedding = model.encode(self.data) | |
# return embedding | |
# except Exception as e: | |
# print(e) | |
# def convert_data(self,model_name:str = 'paraphrase-MiniLM-L6-v2'): | |
# try: | |
# model = SentenceTransformer(model_name) | |
# embeddings = model.encode(self.data) | |
# return embeddings | |
# except Exception as e: | |
# print(e) | |
# if __name__ == "__main__": | |
# emb = GetEmbedding("lalit") | |
# print( emb) |