Spaces:
Runtime error
Runtime error
File size: 8,606 Bytes
880a3ee 2c2434b 880a3ee 2c2434b a3de917 2c2434b a3de917 2c2434b a3de917 2c2434b a3de917 880a3ee 97efcb8 880a3ee 97efcb8 880a3ee 2c2434b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
from fastapi import FastAPI
import pickle
import uvicorn
import pandas as pd
import shutil
import cv2
import mediapipe as mp
from werkzeug.utils import secure_filename
import tensorflow as tf
import os
from flask import Flask, jsonify, request, flash, redirect, url_for
from pyngrok import ngrok
from fastapi import FastAPI, HTTPException, File, UploadFile, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import subprocess
from file_processing import FileProcess
from get_load_data import GetLoadData
from data_preprocess import DataProcessing
from train_pred import TrainPred
app = FastAPI()
public_url = "https://lambang0902-test-space.hf.space"
app.mount("/static", StaticFiles(directory="static"), name="static")
# Tempat deklarasi variabel-variabel penting
filepath = ""
list_class = ['Diamond','Oblong','Oval','Round','Square','Triangle']
list_folder = ['Training', 'Testing']
face_crop_img = True
face_landmark_img = True
landmark_extraction_img = True
# -----------------------------------------------------
# -----------------------------------------------------
# Tempat deklarasi model dan sejenisnya
selected_model = tf.keras.models.load_model(f'models/fc_model_1.h5', compile=False)
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
# -----------------------------------------------------
# -----------------------------------------------------
# Tempat setting server
UPLOAD_FOLDER = './upload'
UPLOAD_MODEL = './models'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg','zip','h5'}
# -----------------------------------------------------
#Endpoints
#Root endpoints
@app.get("/")
async def root():
# Dapatkan URL publik dari ngrok
ngrok_url = "Tidak Ada URL Publik (ngrok belum selesai memulai)"
return {"message": "Hello, World!", "ngrok_url": ngrok_url}
# #-----------------------------------------------------
#
data_processor = DataProcessing()
data_train_pred = TrainPred()
#
import random
def preprocessing(filepath):
folder_path = './static/temporary'
shutil.rmtree(folder_path)
os.mkdir(folder_path)
# data_processor.detect_landmark(data_processor.face_cropping_pred(filepath))
data_processor.enhance_contrast_histeq(data_processor.face_cropping_pred(filepath))
files = os.listdir(folder_path)
index = 0
for file_name in files:
file_ext = os.path.splitext(file_name)[1]
new_file_name = str(index) + "_" + str(random.randint(1, 100000)) + file_ext
os.rename(os.path.join(folder_path, file_name), os.path.join(folder_path, new_file_name))
index += 1
print("Tungu sampai selesaiii")
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
## -------------------------------------------------------------------------
## API UNTUK MELAKUKAN PROSES PREDIKSI
## -------------------------------------------------------------------------
@app.post('/upload/file',tags=["Predicting"])
async def upload_file(picture: UploadFile):
file_extension = picture.filename.split('.')[-1].lower()
if file_extension not in ALLOWED_EXTENSIONS:
raise HTTPException(status_code=400, detail='Invalid file extension')
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
file_path = os.path.join(UPLOAD_FOLDER, secure_filename(picture.filename))
with open(file_path, 'wb') as f:
f.write(picture.file.read())
try:
processed_img = preprocessing(cv2.imread(file_path))
except Exception as e:
os.remove(file_path)
raise HTTPException(status_code=500, detail=f'Error processing image: {str(e)}')
return JSONResponse(content={'message': 'File successfully uploaded'}, status_code=200)
@app.get('/get_images', tags=["Predicting"])
def get_images():
folder_path = "./static/temporary"
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
urls = []
for i in range(0, 3):
url = f'{public_url}/static/temporary/{files[i]}'
urls.append(url)
bentuk, persentase = data_train_pred.prediction(selected_model)
return {'urls': urls, 'bentuk_wajah':bentuk[0], 'persen':persentase}
## -------------------------------------------------------------------------
## API UNTUK MELAKUKAN PROSES TRAINING
## -------------------------------------------------------------------------
# Model pydantic untuk validasi body
class TrainingParams(BaseModel):
optimizer: str
epoch: int
batchSize: int
@app.post('/upload/dataset', tags=["Training"])
async def upload_data(dataset: UploadFile):
if dataset.filename == '':
raise HTTPException(status_code=400, detail='No file selected for uploading')
# Buat path lengkap untuk menyimpan file
file_path = os.path.join(UPLOAD_FOLDER, dataset.filename)
# Simpan file ke folder yang ditentukan
with open(file_path, "wb") as file_object:
file_object.write(dataset.file.read())
# Panggil fungsi untuk mengekstrak file jika perlu
FileProcess.extract_zip(file_path)
return {'message': 'File successfully uploaded'}
@app.post('/set_params', tags=["Training"])
async def set_params(request: Request, params: TrainingParams):
global optimizer, epoch, batch_size
optimizer = params.optimizer
epoch = params.epoch
batch_size = params.batchSize
response = {'message': 'Set parameter sukses'}
return response
@app.get('/get_info_data', tags=["Training"])
def get_info_prepro():
global optimizer, epoch, batch_size
training_counts = GetLoadData.get_training_file_counts().json
testing_counts = GetLoadData.get_testing_file_counts().json
response = {
"optimizer": optimizer,
"epoch": epoch,
"batch_size": batch_size,
"training_counts": training_counts,
"testing_counts": testing_counts
}
return response
@app.get('/get_images_preprocess', tags=["Training"])
def get_random_images_crop():
images_face_landmark = GetLoadData.get_random_images(tahap="Face Landmark",public_url=public_url)
images_face_extraction = GetLoadData.get_random_images(tahap="landmark Extraction", public_url=public_url)
response = {
"face_landmark": images_face_landmark,
"landmark_extraction": images_face_extraction
}
return response
@app.get('/do_preprocessing', tags=["Training"])
async def do_preprocessing():
try:
data_train_pred.do_pre1(test="")
data_train_pred.do_pre2(test="")
return {'message': 'Preprocessing sukses'}
except Exception as e:
# Tangani kesalahan dan kembalikan respons kesalahan
error_message = f'Error during preprocessing: {str(e)}'
raise HTTPException(status_code=500, detail=error_message)
@app.get('/do_training', tags=["Training"])
def do_training():
global epoch
folder = ""
if (face_landmark_img == True and landmark_extraction_img == True):
folder = "Landmark Extraction"
elif (face_landmark_img == True and landmark_extraction_img == False):
folder = "Face Landmark"
# --------------------------------------------------------------
train_dataset_path = f"./static/dataset/{folder}/Training/"
test_dataset_path = f"./static/dataset/{folder}/Testing/"
train_image_df, test_image_df = GetLoadData.load_image_dataset(train_dataset_path, test_dataset_path)
train_gen, test_gen = data_train_pred.data_configuration(train_image_df, test_image_df)
model = data_train_pred.model_architecture()
result = data_train_pred.train_model(model, train_gen, test_gen, epoch)
# Mengambil nilai akurasi training dan validation dari objek result
train_acc = result.history['accuracy'][-1]
val_acc = result.history['val_accuracy'][-1]
# Plot accuracy
data_train_pred.plot_accuracy(result=result, epoch=epoch)
acc_url = f'{public_url}/static/accuracy_plot.png'
# Plot loss
data_train_pred.plot_loss(result=result, epoch=epoch)
loss_url = f'{public_url}/static/loss_plot.png'
# Confusion Matrix
data_train_pred.plot_confusion_matrix(model, test_gen)
conf_url = f'{public_url}/static/confusion_matrix.png'
return jsonify({'train_acc': train_acc, 'val_acc': val_acc, 'plot_acc': acc_url, 'plot_loss':loss_url,'conf':conf_url}) |