File size: 8,606 Bytes
880a3ee
 
 
 
2c2434b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
880a3ee
 
2c2434b
 
a3de917
2c2434b
 
 
 
 
 
 
a3de917
 
 
2c2434b
 
 
 
 
 
a3de917
 
 
 
2c2434b
 
 
 
a3de917
880a3ee
 
 
97efcb8
 
 
880a3ee
97efcb8
880a3ee
2c2434b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from fastapi import FastAPI
import pickle
import uvicorn
import pandas as pd
import shutil
import cv2
import mediapipe as mp
from werkzeug.utils import secure_filename
import tensorflow as tf
import os
from flask import Flask, jsonify, request, flash, redirect, url_for
from pyngrok import ngrok
from fastapi import FastAPI, HTTPException, File, UploadFile, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse
from pydantic import BaseModel
import subprocess

from file_processing import FileProcess
from get_load_data import GetLoadData
from data_preprocess import DataProcessing
from train_pred import TrainPred

app = FastAPI()
public_url = "https://lambang0902-test-space.hf.space"
app.mount("/static", StaticFiles(directory="static"), name="static")

# Tempat deklarasi variabel-variabel penting
filepath = ""
list_class = ['Diamond','Oblong','Oval','Round','Square','Triangle']
list_folder = ['Training', 'Testing']
face_crop_img = True
face_landmark_img = True
landmark_extraction_img = True
# -----------------------------------------------------

# -----------------------------------------------------
# Tempat deklarasi model dan sejenisnya
selected_model = tf.keras.models.load_model(f'models/fc_model_1.h5', compile=False)
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
mp_drawing = mp.solutions.drawing_utils
mp_face_mesh = mp.solutions.face_mesh
drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
# -----------------------------------------------------


# -----------------------------------------------------
# Tempat setting server
UPLOAD_FOLDER = './upload'
UPLOAD_MODEL = './models'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg','zip','h5'}
# -----------------------------------------------------
#Endpoints 
#Root endpoints
@app.get("/")
async def root():
    # Dapatkan URL publik dari ngrok
    ngrok_url = "Tidak Ada URL Publik (ngrok belum selesai memulai)"

    return {"message": "Hello, World!", "ngrok_url": ngrok_url}


# #-----------------------------------------------------
#
data_processor = DataProcessing()
data_train_pred = TrainPred()
#
import random
def preprocessing(filepath):
    folder_path = './static/temporary'

    shutil.rmtree(folder_path)
    os.mkdir(folder_path)

    # data_processor.detect_landmark(data_processor.face_cropping_pred(filepath))
    data_processor.enhance_contrast_histeq(data_processor.face_cropping_pred(filepath))

    files = os.listdir(folder_path)
    index = 0
    for file_name in files:
        file_ext = os.path.splitext(file_name)[1]
        new_file_name = str(index) + "_" + str(random.randint(1, 100000)) + file_ext
        os.rename(os.path.join(folder_path, file_name), os.path.join(folder_path, new_file_name))
        index += 1

    print("Tungu sampai selesaiii")

train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)

## -------------------------------------------------------------------------
##                   API UNTUK MELAKUKAN PROSES PREDIKSI
## -------------------------------------------------------------------------

@app.post('/upload/file',tags=["Predicting"])
async def upload_file(picture: UploadFile):
    file_extension = picture.filename.split('.')[-1].lower()


    if file_extension not in ALLOWED_EXTENSIONS:
        raise HTTPException(status_code=400, detail='Invalid file extension')

    os.makedirs(UPLOAD_FOLDER, exist_ok=True)
    file_path = os.path.join(UPLOAD_FOLDER, secure_filename(picture.filename))
    with open(file_path, 'wb') as f:
        f.write(picture.file.read())
    try:
        processed_img = preprocessing(cv2.imread(file_path))
    except Exception as e:
        os.remove(file_path)
        raise HTTPException(status_code=500, detail=f'Error processing image: {str(e)}')

    return JSONResponse(content={'message': 'File successfully uploaded'}, status_code=200)

@app.get('/get_images', tags=["Predicting"])
def get_images():
    folder_path = "./static/temporary"
    files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
    urls = []
    for i in range(0, 3):
        url = f'{public_url}/static/temporary/{files[i]}'
        urls.append(url)
        bentuk, persentase = data_train_pred.prediction(selected_model)
    return {'urls': urls, 'bentuk_wajah':bentuk[0], 'persen':persentase}


## -------------------------------------------------------------------------
##                   API UNTUK MELAKUKAN PROSES TRAINING
## -------------------------------------------------------------------------

# Model pydantic untuk validasi body
class TrainingParams(BaseModel):
    optimizer: str
    epoch: int
    batchSize: int

@app.post('/upload/dataset', tags=["Training"])
async def upload_data(dataset: UploadFile):
    if dataset.filename == '':
        raise HTTPException(status_code=400, detail='No file selected for uploading')

    # Buat path lengkap untuk menyimpan file
    file_path = os.path.join(UPLOAD_FOLDER, dataset.filename)

    # Simpan file ke folder yang ditentukan
    with open(file_path, "wb") as file_object:
        file_object.write(dataset.file.read())

    # Panggil fungsi untuk mengekstrak file jika perlu
    FileProcess.extract_zip(file_path)

    return {'message': 'File successfully uploaded'}

@app.post('/set_params', tags=["Training"])
async def set_params(request: Request, params: TrainingParams):
    global optimizer, epoch, batch_size

    optimizer = params.optimizer
    epoch = params.epoch
    batch_size = params.batchSize

    response = {'message': 'Set parameter sukses'}
    return response

@app.get('/get_info_data', tags=["Training"])
def get_info_prepro():
    global optimizer, epoch, batch_size
    training_counts = GetLoadData.get_training_file_counts().json
    testing_counts = GetLoadData.get_testing_file_counts().json
    response = {
        "optimizer": optimizer,
        "epoch": epoch,
        "batch_size": batch_size,
        "training_counts": training_counts,
        "testing_counts": testing_counts
    }
    return response

@app.get('/get_images_preprocess', tags=["Training"])
def get_random_images_crop():
    images_face_landmark = GetLoadData.get_random_images(tahap="Face Landmark",public_url=public_url)
    images_face_extraction = GetLoadData.get_random_images(tahap="landmark Extraction", public_url=public_url)

    response = {
        "face_landmark": images_face_landmark,
        "landmark_extraction": images_face_extraction
    }
    return response

@app.get('/do_preprocessing', tags=["Training"])
async def do_preprocessing():
    try:
        data_train_pred.do_pre1(test="")
        data_train_pred.do_pre2(test="")
        return {'message': 'Preprocessing sukses'}
    except Exception as e:
        # Tangani kesalahan dan kembalikan respons kesalahan
        error_message = f'Error during preprocessing: {str(e)}'
        raise HTTPException(status_code=500, detail=error_message)

@app.get('/do_training', tags=["Training"])
def do_training():
    global epoch
    folder = ""
    if (face_landmark_img == True and landmark_extraction_img == True):
        folder = "Landmark Extraction"
    elif (face_landmark_img == True and landmark_extraction_img == False):
        folder = "Face Landmark"
    # --------------------------------------------------------------
    train_dataset_path = f"./static/dataset/{folder}/Training/"
    test_dataset_path = f"./static/dataset/{folder}/Testing/"

    train_image_df, test_image_df = GetLoadData.load_image_dataset(train_dataset_path, test_dataset_path)

    train_gen, test_gen = data_train_pred.data_configuration(train_image_df, test_image_df)
    model = data_train_pred.model_architecture()

    result = data_train_pred.train_model(model, train_gen, test_gen, epoch)

    # Mengambil nilai akurasi training dan validation dari objek result
    train_acc = result.history['accuracy'][-1]
    val_acc = result.history['val_accuracy'][-1]

    # Plot accuracy
    data_train_pred.plot_accuracy(result=result, epoch=epoch)
    acc_url = f'{public_url}/static/accuracy_plot.png'

    # Plot loss
    data_train_pred.plot_loss(result=result, epoch=epoch)
    loss_url = f'{public_url}/static/loss_plot.png'

    # Confusion Matrix
    data_train_pred.plot_confusion_matrix(model, test_gen)
    conf_url = f'{public_url}/static/confusion_matrix.png'

    return jsonify({'train_acc': train_acc, 'val_acc': val_acc, 'plot_acc': acc_url, 'plot_loss':loss_url,'conf':conf_url})