File size: 4,460 Bytes
880a3ee
 
 
 
2c2434b
809ffc6
2c2434b
 
 
 
 
 
 
50230bf
2c2434b
 
 
1628526
c298d3a
880a3ee
 
2c2434b
 
a3de917
2c2434b
 
 
 
 
 
 
a3de917
 
 
2c2434b
 
50230bf
cf2491c
 
 
a3de917
 
 
 
2c2434b
 
 
 
a3de917
880a3ee
 
 
97efcb8
 
 
880a3ee
97efcb8
880a3ee
2c2434b
f439788
 
cf2491c
89199dc
f439788
4012d7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from fastapi import FastAPI
import pickle
import uvicorn
import pandas as pd
import shutil
# import cv2
import tensorflow as tf
import os
from flask import Flask, jsonify, request, flash, redirect, url_for
from pyngrok import ngrok
from fastapi import FastAPI, HTTPException, File, UploadFile, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse


from file_processing import FileProcess
from get_load_data import GetLoadData
# from data_preprocess import DataProcessing
# from train_pred import TrainPred

app = FastAPI()
public_url = "https://lambang0902-test-space.hf.space"
app.mount("/static", StaticFiles(directory="static"), name="static")

# Tempat deklarasi variabel-variabel penting
filepath = ""
list_class = ['Diamond','Oblong','Oval','Round','Square','Triangle']
list_folder = ['Training', 'Testing']
face_crop_img = True
face_landmark_img = True
landmark_extraction_img = True
# -----------------------------------------------------

# -----------------------------------------------------
# Tempat deklarasi model dan sejenisnya
selected_model = tf.keras.models.load_model(f'models/fc_model_1.h5', compile=False)
# face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt2.xml')
# mp_drawing = mp.solutions.drawing_utils
# mp_face_mesh = mp.solutions.face_mesh
# drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1)
# -----------------------------------------------------


# -----------------------------------------------------
# Tempat setting server
UPLOAD_FOLDER = './upload'
UPLOAD_MODEL = './models'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg','zip','h5'}
# -----------------------------------------------------
#Endpoints 
#Root endpoints
@app.get("/")
async def root():
    # Dapatkan URL publik dari ngrok
    ngrok_url = "Tidak Ada URL Publik (ngrok belum selesai memulai)"

    return {"message": "Hello, World!", "ngrok_url": ngrok_url}


#-----------------------------------------------------

# data_processor = DataProcessing()
# data_train_pred = TrainPred()

# import random
# def preprocessing(filepath):
#     folder_path = './static/temporary'

#     shutil.rmtree(folder_path)
#     os.mkdir(folder_path)

#     # data_processor.detect_landmark(data_processor.face_cropping_pred(filepath))
#     data_processor.enhance_contrast_histeq(data_processor.face_cropping_pred(filepath))

#     files = os.listdir(folder_path)
#     index = 0
#     for file_name in files:
#         file_ext = os.path.splitext(file_name)[1]
#         new_file_name = str(index) + "_" + str(random.randint(1, 100000)) + file_ext
#         os.rename(os.path.join(folder_path, file_name), os.path.join(folder_path, new_file_name))
#         index += 1

#     print("Tungu sampai selesaiii")

# train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)
# test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1 / 255.)

# ## -------------------------------------------------------------------------
# ##                   API UNTUK MELAKUKAN PROSES PREDIKSI
# ## -------------------------------------------------------------------------

# @app.post('/upload/file',tags=["Predicting"])
# async def upload_file(picture: UploadFile):
#     file_extension = picture.filename.split('.')[-1].lower()


#     if file_extension not in ALLOWED_EXTENSIONS:
#         raise HTTPException(status_code=400, detail='Invalid file extension')

#     os.makedirs(UPLOAD_FOLDER, exist_ok=True)
#     file_path = os.path.join(UPLOAD_FOLDER, secure_filename(picture.filename))
#     with open(file_path, 'wb') as f:
#         f.write(picture.file.read())
#     try:
#         processed_img = preprocessing(cv2.imread(file_path))
#     except Exception as e:
#         os.remove(file_path)
#         raise HTTPException(status_code=500, detail=f'Error processing image: {str(e)}')

#     return JSONResponse(content={'message': 'File successfully uploaded'}, status_code=200)

# @app.get('/get_images', tags=["Predicting"])
# def get_images():
#     folder_path = "./static/temporary"
#     files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
#     urls = []
#     for i in range(0, 3):
#         url = f'{public_url}/static/temporary/{files[i]}'
#         urls.append(url)
#         bentuk, persentase = data_train_pred.prediction(selected_model)
#     return {'urls': urls, 'bentuk_wajah':bentuk[0], 'persen':persentase}