Test-Space / train_pred.py
Lambang
final succes
682c690
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from sklearn.metrics import confusion_matrix
import os
import cv2
import numpy as np
from tqdm import tqdm
from flask import jsonify, flash, redirect, url_for
from pathlib import Path
from get_load_data import GetLoadData
from data_preprocess import DataProcessing
list_folder = ['Training', 'Testing']
class TrainPred:
def __init__(self, batch_size=32):
self.batch_size = batch_size
self.list_class = ['Diamond', 'Oblong', 'Oval', 'Round', 'Square', 'Triangle']
self.face_crop_img = True
self.face_landmark_img = True
self.landmark_extraction_img = True
self.prepro_img = 0
self.prepro_img2 = 0
self.name = ""
self.progres = 0
self.data_processor = DataProcessing()
def train_model(self, model, train_generator, test_generator, epoch):
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
history = model.fit(train_generator, epochs=epoch, validation_data=test_generator)
return history
def prediction(self, model):
img_width, img_height = 200, 200
img = load_img("./static/result_upload2.jpg", target_size=(img_width, img_height))
# img = load_img("./static/result_upload2.jpg")
img = img_to_array(img)
img = img/255.0
img = np.expand_dims(img, axis=0)
pred = model.predict(img)
pred_2 = model.predict_on_batch(img)
print(f"Pred :{pred}")
print(f"Pred 2 : {pred_2}")
# menghitung softmax
softmax_pred = np.exp(pred) / np.sum(np.exp(pred), axis=1, keepdims=True)
max_value = int(round(np.max(softmax_pred * 100)))
pred = np.argmax(pred, axis=1)
# Map the label
pred = [self.list_class[k] for k in pred]
return pred, max_value
def plot_accuracy(self, result, epoch):
train_acc_gr = result.history['accuracy']
val_acc_gr = result.history['val_accuracy']
epochs = range(1, epoch+1)
# Plot training accuracy
plt.plot(epochs, train_acc_gr, label='Training Accuracy')
plt.plot(epochs, val_acc_gr, label='Testing Accuracy')
# Set plot title and labels
plt.title('Model Accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(loc='best')
# Save plot as image file
plt.savefig('./static/accuracy_plot.png')
def plot_loss(self, result, epoch):
train_loss_gr = result.history['loss']
val_loss_gr = result.history['val_loss']
epochs = range(1, epoch+1)
# Plot training accuracy
plt.plot(epochs, train_loss_gr, label='Training Loss')
plt.plot(epochs, val_loss_gr, label='Testing Loss')
# Set plot title and labels
plt.title('Model Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(loc='best')
# Save plot as image file
plt.savefig('./static/loss_plot.png')
def plot_confusion_matrix(self, model, test_generator):
# Get the predictions from the model
predictions = model.predict(test_generator, steps=len(test_generator), verbose=1)
y_pred = np.argmax(predictions, axis=1)
y_true = test_generator.classes
# Generate confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Plot the confusion matrix
fig, ax = plt.subplots(figsize=(8, 8))
ax.imshow(cm, cmap='Blues')
ax.set_title('Confusion Matrix')
ax.set_xlabel('Predicted Labels')
ax.set_ylabel('True Labels')
ax.set_xticks(range(len(test_generator.class_indices)))
ax.set_xticklabels(test_generator.class_indices.keys(), rotation=90)
ax.set_yticks(range(len(test_generator.class_indices)))
ax.set_yticklabels(test_generator.class_indices.keys())
for i in range(len(test_generator.class_indices)):
for j in range(len(test_generator.class_indices)):
ax.text(j, i, str(cm[i, j]), ha='center', va='center', color='white')
fig.tight_layout()
filename = './static/confusion_matrix.png'
# Save the confusion matrix as an image file
fig.savefig(filename)
return filename
def data_configuration(self, train_image_df, test_image_df):
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_dataframe(
dataframe=train_image_df,
x_col='Filepath',
y_col='Label',
target_size=(220, 280),
color_mode='rgb',
class_mode='categorical',
batch_size=self.batch_size,
subset='training'
)
test_generator = test_datagen.flow_from_dataframe(
dataframe=test_image_df,
x_col='Filepath',
y_col='Label',
target_size=(220, 280),
color_mode='rgb',
class_mode='categorical',
batch_size=self.batch_size,
subset='training'
)
return train_generator, test_generator
def model_architecture(self):
model = tf.keras.models.Sequential()
# layers from the previous code
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu', input_shape=(220, 280, 3)))
model.add(tf.keras.layers.Conv2D(64, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu'))
model.add(tf.keras.layers.Conv2D(128, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu'))
model.add(tf.keras.layers.Conv2D(256, (3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(6, activation='softmax'))
model.summary()
return model
# @staticmethod
def do_pre1(self,test):
global prepro_img
global face_landmark_img, landmark_extraction_img
self.prepro_img = 0
try:
if (self.face_landmark_img == True):
GetLoadData.folder_maker("Face Landmark")
for i in tqdm(range(0, len(list_folder)), desc=f"Processing {list_folder} images"):
for j in range(0, len(self.list_class)):
dataset = f"./static/dataset/Face Shape/{list_folder[i]}/{self.list_class[j]}"
len_dataset = os.listdir(f"./static/dataset/Face Shape/{list_folder[i]}/{self.list_class[j]}")
image_dir = Path(dataset)
for k in (range(0, len(len_dataset))):
filepaths, labels = GetLoadData.load_image_data(image_dir)
img = cv2.imread(filepaths[k])
img = self.data_processor.annotate_face_mesh(image=img)
# print("./static/dataset/Face Landmark/" + f"{list_folder[i]}/" + f"{list_class[j]}/" + f"{len_dataset[k]}")
cv2.imwrite(
"./static/dataset/Face Landmark/" + f"{list_folder[i]}/" + f"{self.list_class[j]}/" + f"{len_dataset[k]}",
img)
self.prepro_img += 1
return jsonify({'message': 'Preprocessing 1 sukses'}), 200
except Exception as e:
flash('Terjadi error: {}'.format(str(e)))
return redirect(url_for('index'))
def do_pre2(self,test):
global prepro_img2
global face_landmark_img, landmark_extraction_img
self.prepro_img2 = 0
try:
if (self.landmark_extraction_img == True):
GetLoadData.folder_maker("Landmark Extraction")
for i2 in tqdm(range(0, len(list_folder)), desc=f"Processing {list_folder} images"):
for j2 in range(0, len(self.list_class)):
new_dataset = f"./static/dataset/Face Landmark/{list_folder[i2]}/{self.list_class[j2]}"
len_new_dataset = os.listdir(
f"./static/dataset/Face Landmark/{list_folder[i2]}/{self.list_class[j2]}")
image_dir = Path(new_dataset)
for k in (range(0, len(len_new_dataset))):
filepaths, labels = GetLoadData.load_image_data(image_dir)
img = cv2.imread(filepaths[k])
subtracted_img = np.zeros(img.shape, np.uint8)
# ----------------------------------------------------------------------
img1 = cv2.imread(
f'./static/dataset/Face Landmark/{list_folder[i2]}/{self.list_class[j2]}/{len_new_dataset[k]}')
img2 = cv2.imread(
f'./static/dataset/Face Shape/{list_folder[i2]}/{self.list_class[j2]}/{len_new_dataset[k]}')
# Lakukan perhitungan pengurangan pixel secara manual
for l in range(img1.shape[0]):
for m in range(img1.shape[1]):
subtracted_img[l, m] = abs(int(img1[l, m][0]) - int(img2[l, m][0]))
# ----------------------------------------------------------------------
cv2.imwrite(
"./static/dataset/Landmark Extraction/" + f"{list_folder[i2]}/" + f"{self.list_class[j2]}/" + f"{len_new_dataset[k]}",
subtracted_img)
self.prepro_img2 += 1
# requests.get(url_for('get_progress_1', _external=True), params={'progress': prepro_img2})
# prepro_img = 0
# code preprocessing
return jsonify({'message': 'Preprocessing sukses'}), 200
except Exception as e:
flash('Terjadi error: {}'.format(str(e)))
return redirect(url_for('index'))
def get_progress_1(self):
if self.prepro_img > 0:
self.name = "Face Landmark"
self.progres = self.prepro_img
print(self.progres)
if self.prepro_img2 > 0:
self.name = "Landmark Extraction"
self.progres = self.prepro_img2
print(self.progres)
return self.progres, self.name