kyle8581's picture
upload
dd39c08
import dataclasses
import os
import random
import re
import tempfile
import numpy as np
import pytest
from browsergym.core.action.base import AbstractActionSet
from browsergym.experiments.agent import Agent
from browsergym.experiments.benchmark import Benchmark, HighLevelActionSetArgs
from browsergym.experiments.benchmark.configs import DEFAULT_BENCHMARKS
from browsergym.experiments.benchmark.utils import make_env_args_list_from_fixed_seeds
from browsergym.experiments.loop import AbstractAgentArgs, ExpArgs, get_exp_result
from browsergym.utils.obs import flatten_axtree_to_str
class MiniwobTestAgent(Agent):
def __init__(self, action_set: AbstractActionSet):
self.action_set = action_set
def obs_preprocessor(self, obs: dict):
return {"axtree_txt": flatten_axtree_to_str(obs["axtree_object"])}
def get_action(self, obs: dict) -> tuple[str, dict]:
match = re.search(r"^\s*\[(\d+)\].*button", obs["axtree_txt"], re.MULTILINE | re.IGNORECASE)
if match:
bid = match.group(1)
action = f'click("{bid}")'
else:
raise Exception("Can't find the button's bid")
return action, dict(think="I'm clicking the button as requested.")
@dataclasses.dataclass
class MiniwobTestAgentArgs(AbstractAgentArgs):
high_level_action_set: HighLevelActionSetArgs = None
def make_agent(self):
return MiniwobTestAgent(action_set=self.high_level_action_set.make_action_set())
def test_build_benchmarks():
expected_bench_size = {
"miniwob": 125 * 5,
"miniwob_tiny_test": 2 * 2,
"webarena": 812,
"webarena_tiny": 6,
"visualwebarena": 910,
"visualwebarena_tiny": 4,
"workarena_l1": 33 * 10,
"workarena_l2_agent_curriculum_eval": 235,
"workarena_l3_agent_curriculum_eval": 235,
"assistantbench": 214,
"weblinx": 31586,
}
for name, benchmark_builder in DEFAULT_BENCHMARKS.items():
benchmark = benchmark_builder()
assert name == benchmark.name
assert benchmark.env_args_list # non-empty
assert benchmark.task_metadata is not None
assert len(benchmark.env_args_list) == expected_bench_size[name]
benchmark_bis = Benchmark.from_json(benchmark.to_json())
assert benchmark.to_dict() == benchmark_bis.to_dict()
def test_benchmark_subset():
benchmark: Benchmark = DEFAULT_BENCHMARKS["miniwob"]()
benchmark_subset = benchmark.subset_from_regexp(column="task_name", regexp="click")
assert len(benchmark_subset.env_args_list) == 31 * 5
assert benchmark_subset.name == "miniwob[task_name=/click/]"
benchmark_subset_1 = benchmark_subset.subset_from_regexp(
column="miniwob_category", regexp="original"
)
benchmark_subset_2 = benchmark_subset.subset_from_glob(
column="miniwob_category", glob="original"
)
assert benchmark_subset_1.name == "miniwob[task_name=/click/][miniwob_category=/original/]"
assert benchmark_subset_2.name == "miniwob[task_name=/click/][miniwob_category=original]"
dict_1 = benchmark_subset_1.to_dict()
dict_1.pop("name")
dict_2 = benchmark_subset_2.to_dict()
dict_2.pop("name")
assert dict_1 == dict_2
def test_benchmark_subset_from_task_ratio():
benchmark: Benchmark = DEFAULT_BENCHMARKS["webarena"]()
# Store initial random state
initial_state = random.getstate()
benchmark_subset = benchmark.subset_from_task_ratio(ratio=0.5, seed=1)
assert len(benchmark_subset.env_args_list) == 812 // 2
assert benchmark_subset.name == "webarena[ratio=0.5, seed=1]"
# Verify global random state hasn't changed
assert random.getstate() == initial_state
benchmark_subset_1 = benchmark_subset.subset_from_task_ratio(ratio=0.5, seed=1)
benchmark_subset_2 = benchmark_subset.subset_from_task_ratio(ratio=0.5, seed=2)
# Verify global random state still hasn't changed
assert random.getstate() == initial_state
# Check the task lists are different
assert not np.all(
[
env_args.task_name == env_args_2.task_name
for env_args, env_args_2 in zip(
benchmark_subset_1.env_args_list, benchmark_subset_2.env_args_list
)
]
)
dict_1 = benchmark_subset_1.to_dict()
dict_1.pop("name")
dict_2 = benchmark_subset_2.to_dict()
dict_2.pop("name")
assert len(dict_1["env_args_list"]) == len(dict_2["env_args_list"])
assert dict_1 != dict_2
def test_prepare_backend_miniwob():
MINIWOB_URL = os.environ["MINIWOB_URL"]
try:
benchmark: Benchmark = DEFAULT_BENCHMARKS["miniwob"]()
benchmark.prepare_backends()
del os.environ["MINIWOB_URL"]
with pytest.raises(Exception):
benchmark.prepare_backends()
os.environ["MINIWOB_URL"] = ""
with pytest.raises(Exception):
benchmark.prepare_backends()
finally:
os.environ["MINIWOB_URL"] = MINIWOB_URL
def test_prepare_backend_assistantbench():
benchmark: Benchmark = DEFAULT_BENCHMARKS["assistantbench"]()
benchmark.prepare_backends()
@pytest.mark.skip
def test_prepare_backend_webarena():
WA_FULL_RESET = os.environ["WA_FULL_RESET"]
try:
benchmark: Benchmark = DEFAULT_BENCHMARKS["webarena"]()
benchmark.prepare_backends()
del os.environ["WA_FULL_RESET"]
with pytest.raises(Exception):
benchmark.prepare_backends()
os.environ["WA_FULL_RESET"] = "http://localhost:12345/reset"
with pytest.raises(Exception):
benchmark.prepare_backends()
finally:
os.environ["WA_FULL_RESET"] = WA_FULL_RESET
@pytest.mark.skip
def test_prepare_backend_visualwebarena():
VWA_FULL_RESET = os.environ["VWA_FULL_RESET"]
try:
benchmark: Benchmark = DEFAULT_BENCHMARKS["visualwebarena"]()
benchmark.prepare_backends()
del os.environ["VWA_FULL_RESET"]
with pytest.raises(Exception):
benchmark.prepare_backends()
os.environ["VWA_FULL_RESET"] = "http://localhost:12345/reset"
with pytest.raises(Exception):
benchmark.prepare_backends()
finally:
os.environ["VWA_FULL_RESET"] = VWA_FULL_RESET
@pytest.mark.skip
def test_prepare_backend_weblinx():
BROWSERGYM_WEBLINX_CACHE_DIR = os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"]
try:
benchmark: Benchmark = DEFAULT_BENCHMARKS["weblinx"]()
benchmark.prepare_backends()
del os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"]
with pytest.raises(Exception):
benchmark.prepare_backends()
finally:
os.environ["BROWSERGYM_WEBLINX_CACHE_DIR"] = BROWSERGYM_WEBLINX_CACHE_DIR
def test_run_mock_benchmark():
benchmark = Benchmark(
name="miniwob_click_test",
high_level_action_set_args=HighLevelActionSetArgs(
subsets=["bid"],
multiaction=False,
strict=False,
retry_with_force=True,
demo_mode="off",
),
is_multi_tab=False,
supports_parallel_seeds=True,
backends=["miniwob"],
env_args_list=make_env_args_list_from_fixed_seeds(
task_list=["miniwob.click-test"],
max_steps=5,
fixed_seeds=[0, 1],
),
)
for env_args in benchmark.env_args_list:
agent_args = MiniwobTestAgentArgs(
high_level_action_set=benchmark.high_level_action_set_args
)
exp_args = ExpArgs(
agent_args=agent_args,
env_args=env_args,
)
with tempfile.TemporaryDirectory() as tmp_dir:
exp_args.prepare(tmp_dir)
exp_args.run()
exp_result = get_exp_result(exp_args.exp_dir)
exp_record = exp_result.get_exp_record()
target = {
"env_args.task_name": "miniwob.click-test",
"env_args.headless": True,
"env_args.record_video": False,
"n_steps": 1,
"cum_reward": 1.0,
"terminated": True,
"truncated": False,
}
assert len(exp_result.steps_info) == 2
for key, target_val in target.items():
assert key in exp_record
assert exp_record[key] == target_val
def test_dependency_graphs():
benchmark = Benchmark(
name="my_bench",
high_level_action_set_args=HighLevelActionSetArgs(
subsets=["bid"],
multiaction=False,
strict=False,
retry_with_force=True,
demo_mode="off",
),
is_multi_tab=False,
supports_parallel_seeds=True,
backends=["miniwob"],
env_args_list=make_env_args_list_from_fixed_seeds(
task_list=["miniwob.click-test"],
max_steps=5,
fixed_seeds=[0, 1],
),
)
# one task, two seeds
task_dependencies = benchmark.dependency_graph_over_tasks()
assert task_dependencies == {"miniwob.click-test": []}
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: [], 1: []}]
# change to no parallel seed support
benchmark.supports_parallel_seeds = False
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: []}, {1: []}]
# webarena, 3 tasks x 1 seed
benchmark = DEFAULT_BENCHMARKS["webarena"]().subset_from_regexp(
column="task_name", regexp=r"^webarena\.[012]$"
)
task_dependencies = benchmark.dependency_graph_over_tasks()
assert task_dependencies == {
"webarena.0": [],
"webarena.1": ["webarena.0"],
"webarena.2": ["webarena.1"],
}
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: [], 1: [0], 2: [1]}]
# workarena L2, 2 task x (2 seeds, 1 seed)
benchmark = DEFAULT_BENCHMARKS["workarena_l2_agent_curriculum_eval"]().subset_from_regexp(
column="task_name",
regexp=r"^workarena\.servicenow\.workload-balancing-small-l2$|^workarena\.servicenow\.easy-expense-management-small-l2$",
)
task_dependencies = benchmark.dependency_graph_over_tasks()
assert task_dependencies == {
"workarena.servicenow.workload-balancing-small-l2": [],
"workarena.servicenow.easy-expense-management-small-l2": [],
}
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: [], 1: [], 2: []}]
# change to no parallel seed support
benchmark.supports_parallel_seeds = False
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert env_args_dependencies == [{0: [], 2: []}, {1: []}]
# webarena, 6 dependent tasks x 1 seed
benchmark = DEFAULT_BENCHMARKS["webarena"]().subset_from_regexp(
column="task_name",
regexp=r"^webarena\.533$|^webarena\.537$|^webarena\.552$|^webarena\.410$|^webarena\.561$|^webarena\.562$",
)
task_dependencies = benchmark.dependency_graph_over_tasks()
assert {k: set(v) for k, v in task_dependencies.items()} == {
k: set(v)
for k, v in {
"webarena.410": [],
"webarena.533": [],
"webarena.537": ["webarena.533"],
"webarena.552": ["webarena.410", "webarena.537"],
"webarena.561": ["webarena.552"],
"webarena.562": ["webarena.552", "webarena.561"],
}.items()
}
env_args_dependencies = benchmark.dependency_graphs_over_env_args()
assert [{k: set(v) for k, v in deps.items()} for deps in env_args_dependencies] == [
{k: set(v) for k, v in {0: [], 1: [], 2: [1], 3: [0, 2], 4: [3], 5: [3, 4]}.items()}
]