UniWorld-V1 / univa /dataset /llava_dataset.py
LinB203
init
0c8d55e
from typing import Any, Callable, Optional, List
import torch
from transformers import PreTrainedTokenizer
from torch.utils.data import Dataset
from tqdm import tqdm
import json
import os
from PIL import Image
from univa.utils.prompter import Prompter
import numpy as np
from einops import rearrange
import random
from univa.utils.constant import SPACIAL_TOKEN, GENERATE_TOKEN
class LlavaDataset(Dataset):
def __init__(
self,
dataset_type: str,
data_txt: str,
tokenizer: PreTrainedTokenizer,
prompter: Prompter,
image_processor: Callable,
processor: Callable = None,
min_pixels: int = 384*384,
max_pixels: int = 384*384,
image_token_length: int = 729,
only_generated_task: bool = False,
drop_prompt_rate: float = 0.2,
):
assert dataset_type == 'llava'
with open(data_txt, "r") as f:
self.datasets = [line.strip() for line in f.readlines()]
self.data = []
self._load_data()
self.tokenizer = tokenizer
self.prompter = prompter
self.image_token_length = image_token_length
self.image_token = SPACIAL_TOKEN[dataset_type]['image_token']
self.image_begin_token = SPACIAL_TOKEN[dataset_type]['image_begin_token']
self.image_end_token = SPACIAL_TOKEN[dataset_type]['image_end_token']
self.generated_image_token = GENERATE_TOKEN
self.image_processor = image_processor
self.only_generated_task = only_generated_task # For denoiser training
self.drop_prompt_rate = drop_prompt_rate
if self.drop_prompt_rate > 0:
assert self.only_generated_task, (
"Only generated task is supported when drop prompt rate is greater than 0"
)
# Add image token if not exists.
if self.image_token not in self.tokenizer.get_vocab():
self.tokenizer.add_special_tokens(
{"additional_special_tokens": [self.image_token]}
)
self.image_token_id = self.tokenizer.convert_tokens_to_ids(self.image_token)
self.image_begin_token_id = self.tokenizer.convert_tokens_to_ids(
self.image_begin_token
)
assert isinstance(self.image_begin_token_id, int), (
f"tokenizer miss image begin token `{self.image_begin_token}`"
)
self.image_end_token_id = self.tokenizer.convert_tokens_to_ids(
self.image_end_token
)
assert isinstance(self.image_end_token_id, int), (
f"tokenizer miss image end token `{self.image_end_token}`"
)
def _load_data(self):
for dataset in self.datasets:
image_root, json_file = dataset.split(",")
# Load json file
with open(json_file, "r") as f:
data = json.load(f)
dataset_data = []
for line in tqdm(data):
# Ensure `image` is a list
if isinstance(line["image"], str):
line["image"] = [line["image"]]
assert isinstance(line["image"], list), (
"`image` must be a str or a list."
)
# Convert image path to absolute path
line["image"] = [
os.path.join(image_root, image_path) for image_path in line["image"]
]
dataset_data.append(line)
print(f"Load {len(dataset_data)} data from {json_file}.")
self.data.extend(dataset_data)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
try:
data: Any = self.data[idx]
# Reformat the conversation to the format of prompter
conversations = []
prompt = ""
for item in data["conversations"]:
if item["from"] == "human":
role = self.prompter.user_role
elif item["from"] == "gpt":
role = self.prompter.assistant_role
else:
raise ValueError(f"Unknown role: {item['from']}")
conversations.append({"from": role, "value": item["value"]})
assert prompt != ""
# Make prompt
drop_condition = False
if self.only_generated_task:
if self.drop_prompt_rate < random.random(): # Randomly drop the prompt
prompt_list = self.prompter.get_train_prompt(conversations)
else:
drop_condition = True
# Drop the prompt
prompt_list = [
{
"from": self.prompter.system_role,
"value": "You are a helpful assistant.",
},
{
"from": self.prompter.user_role,
"value": "Generate an image.",
},
{
"from": self.prompter.assistant_role,
"value": self.generated_image_token,
},
]
prompt_list = self.prompter.get_train_prompt(prompt_list)
else:
prompt_list = self.prompter.get_train_prompt(conversations)
input_ids = []
labels = []
has_generated_image = False
for item in prompt_list:
item["prompt"] = item["prompt"].replace('<image>', self.image_token)
if self.generated_image_token in item["prompt"]: # Check if self.generated_image_token in prompt
assert item["from"] == self.prompter.assistant_role, (
"Generated image token must be in assistant role"
)
assert (
f"{self.generated_image_token}{self.prompter.eos_token}"
in item["prompt"]
), "Generated image token must in end of prompt"
# Replace the generated image token with image begin token and without eos token
item["prompt"] = item["prompt"].replace(
f"{self.generated_image_token}{self.prompter.eos_token}",
self.image_begin_token,
)
has_generated_image = True
tokenized_item = self.tokenizer(
item["prompt"],
return_tensors="pt",
truncation=False,
)
if item["is_labels"]: # If this prompt is labels
labels.append(tokenized_item.input_ids)
else:
labels.append(torch.full_like(tokenized_item.input_ids, -100))
input_ids.append(tokenized_item.input_ids)
if (
self.only_generated_task and not has_generated_image
): # For denoiser training
raise ValueError(
f"Only generated task is not supported. But this prompt not contains generated image token: {prompt_list[0]['prompt']}"
)
input_ids = torch.cat(input_ids, dim=1)
labels = torch.cat(labels, dim=1)
# Load images
if has_generated_image:
if not drop_condition:
image_slice = data["image"][:-1]
else:
image_slice = []
else:
image_slice = data["image"]
image_dict = self._load_image(image_slice, image_processor=self.image_processor, image_token_lengths=self.image_token_length)
image_token_lengths = image_dict['image_token_lengths']
pixel_values = image_dict['pixel_values']
image_grid_thw = image_dict['image_grid_thw']
# Repeat the image token to the length of image_token_length
# and record the position of image tokens.
input_ids, labels, image_position = self._process_image_token(
input_ids,
labels=labels,
image_token_id=self.image_token_id,
image_begin_token_id=self.image_begin_token_id,
image_end_token_id=self.image_end_token_id,
image_token_lengths=image_token_lengths,
)
return_data = {
"input_ids": input_ids,
"labels": labels,
"pixel_values": pixel_values,
"image_position": image_position,
"image_grid_thw": image_grid_thw,
"prompt": [prompt],
}
if has_generated_image: # If this item is a generation task
image = Image.open(data["image"][-1]).convert("RGB")
image_tensor = torch.tensor(np.array(image)) / 255.0 # scale to 0-1
image_tensor = rearrange(image_tensor, "h w c -> c h w")
return_data["generated_image"] = image_tensor
return return_data
except Exception as e:
print(f'Error with {e}')
return self.__getitem__(random.randint(0, self.__len__()-1))
@staticmethod
def _load_image(
image_slice: List[str],
max_pixels: int = 448*448,
min_pixels: int = 448*448,
processor: Callable = None,
image_processor: Callable = None,
image_token_lengths: int = 729,
image_token: str = '<image>',
):
# images tensor shape is (b, c, h, w)
images = []
# Ignore the last image (generated image)
for image_path in image_slice: # Ignore the last image (generated image)
image = Image.open(image_path).convert("RGB")
image = image_processor(
image, return_tensors="pt"
).pixel_values
images.append(image)
if len(images) > 0:
images = torch.cat(images)
image_token_lengths = len(images) * [image_token_lengths]
return {'pixel_values': images, 'image_grid_thw': [], 'image_token_lengths': image_token_lengths}
@staticmethod
def _process_image_token(
input_ids: torch.Tensor,
image_token_id: int,
image_begin_token_id: int,
image_end_token_id: int,
image_token_lengths: List[int],
labels: Optional[torch.Tensor] = None,
):
# Find the indices of the image token
image_token_indices = (input_ids == image_token_id).nonzero(as_tuple=True)
image_position = []
offset = 0
cur_i = 0
if isinstance(image_token_lengths, int):
image_token_lengths = [image_token_lengths] * len(image_token_indices[1])
for idx in image_token_indices[1]:
image_token_length = image_token_lengths[cur_i]
adjusted_idx = idx + offset
assert input_ids[0, adjusted_idx] == image_token_id
# Add image begin and end token
input_ids = torch.cat(
[
input_ids[:, :adjusted_idx],
input_ids.new_full(
(1, 1), image_begin_token_id
), # image begin token
input_ids.new_full(
(1, image_token_length), image_token_id
), # Repeat the image token to the length of image_token_length
input_ids.new_full((1, 1), image_end_token_id), # image end token
input_ids[:, adjusted_idx + 1 :],
],
dim=1,
)
if labels is not None:
labels = torch.cat(
[
labels[:, :adjusted_idx],
labels.new_full(
(1, 1), image_begin_token_id
), # Make begin token as label
labels.new_full((1, image_token_length), -100),
labels.new_full((1, 1), -100),
labels[:, adjusted_idx + 1 :],
],
dim=1,
)
adjusted_idx += 1 # skip the image begin token
image_position.append(adjusted_idx.item())
offset += image_token_length - 1
offset += 2 # begin and end token
return input_ids, labels, image_position