File size: 6,312 Bytes
71a5415 18247d7 cd74778 71a5415 18247d7 71a5415 0076e8a 71a5415 18247d7 71a5415 18247d7 71a5415 18247d7 71a5415 18247d7 71a5415 18247d7 71a5415 09b90bc 71a5415 18247d7 71a5415 18247d7 71a5415 18247d7 71a5415 0076e8a 18247d7 71a5415 18247d7 71a5415 18247d7 71a5415 18247d7 71a5415 18247d7 71a5415 18247d7 71a5415 18247d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import re
from pathlib import Path
from typing import List, Optional
import pandas as pd
import streamlit as st
from docarray import BaseDoc
from docarray.index import InMemoryExactNNIndex
from docarray.typing import TorchTensor
from transformers import pipeline
INDEX_PATH = Path(__file__).parent.joinpath("data/index.bin")
@st.cache_resource(show_spinner="Loading dataset...")
def load_index():
class RepoDoc(BaseDoc):
name: str
topics: List[str]
stars: int
license: str
code_embedding: Optional[TorchTensor[768]]
doc_embedding: Optional[TorchTensor[768]]
default_doc = RepoDoc(
name="",
topics=[],
stars=0,
license="",
code_embedding=None,
doc_embedding=None,
)
return InMemoryExactNNIndex[RepoDoc](index_file_path=INDEX_PATH), default_doc
@st.cache_resource(show_spinner="Loading RepoSim pipeline...")
def load_model():
return pipeline(
model="Lazyhope/RepoSim",
trust_remote_code=True,
device_map="auto",
)
@st.cache_data(show_spinner=False)
def run_model(_model, repo_name, github_token):
with st.spinner(
f"Downloading and extracting the {repo_name}, this may take a while..."
):
extracted_infos = _model.preprocess(repo_name, github_token=github_token)
if not extracted_infos:
return None
with st.spinner(f"Generating embeddings for {repo_name}..."):
repo_info = _model.forward(extracted_infos, st_progress=st.progress(0.0))[0]
return repo_info
def run_search(index, query, search_field, limit):
top_matches, scores = index.find(
query=query, search_field=search_field, limit=limit
)
search_results = top_matches.to_dataframe()
search_results["scores"] = scores
return search_results
index, default_doc = load_index()
model = load_model()
with st.sidebar:
st.text_input(
label="GitHub Token",
key="github_token",
type="password",
placeholder="Paste your GitHub token here",
help="Consider setting GitHub token to avoid hitting rate limits: https://docs.github.com/authentication/keeping-your-account-and-data-secure/creating-a-personal-access-token",
)
st.slider(
label="Search results limit",
min_value=1,
max_value=100,
value=10,
step=1,
key="search_results_limit",
help="Limit the number of search results",
)
st.multiselect(
label="Display columns",
options=["scores", "name", "topics", "stars", "license"],
default=["scores", "name", "topics", "stars", "license"],
help="Select columns to display in the search results",
key="display_columns",
)
repo_regex = r"^((git@|http(s)?://)?(github\.com)(/|:))?(?P<owner>[\w.-]+)(/)(?P<repo>[\w.-]+?)(\.git)?(/)?$"
st.title("RepoSnipy")
st.text_input(
"Enter a GitHub repo URL or owner/repo (case-sensitive):",
value="",
max_chars=200,
placeholder="numpy/numpy",
key="repo_input",
)
st.checkbox(
label="Add/Update this repo to the index",
value=False,
key="update_index",
help="Encode the latest version of this repo and add/update it to the index",
)
search = st.button("Search")
if search:
match_res = re.match(repo_regex, st.session_state.repo_input)
if match_res is not None:
repo_name = f"{match_res.group('owner')}/{match_res.group('repo')}"
records = index.filter({"name": {"$eq": repo_name}})
query_doc = default_doc.copy() if not records else records[0]
if st.session_state.update_index or not records:
repo_info = run_model(model, repo_name, st.session_state.github_token)
if repo_info is None:
st.error("Repo not found or invalid GitHub token!")
st.stop()
# Update document inplace
query_doc.name = repo_info["name"]
query_doc.topics = repo_info["topics"]
query_doc.stars = repo_info["stars"]
query_doc.license = repo_info["license"]
query_doc.code_embedding = repo_info["mean_code_embedding"]
query_doc.doc_embedding = repo_info["mean_doc_embedding"]
if st.session_state.update_index:
if not records:
if not query_doc.license:
st.warning(
"License is missing in this repo and will not be persisted!"
)
elif (
query_doc.code_embedding is None and query_doc.doc_embedding is None
):
st.warning(
"This repo has no function code or docstring extracted and will not be persisted!"
)
else:
index.index(query_doc)
st.success("Repo added to the index!")
else:
st.success("Repo updated in the index!")
with st.spinner("Persisting the index..."):
index.persist(file=INDEX_PATH)
st.session_state["query_doc"] = query_doc
else:
st.error("Invalid input!")
if "query_doc" in st.session_state:
query_doc = st.session_state.query_doc
limit = st.session_state.search_results_limit
st.dataframe(
pd.DataFrame(
[
{
"name": query_doc.name,
"topics": query_doc.topics,
"stars": query_doc.stars,
"license": query_doc.license,
}
],
)
)
display_columns = st.session_state.display_columns
code_sim_tab, doc_sim_tab = st.tabs(["Code Similarity", "Docstring Similarity"])
if query_doc.code_embedding is not None:
code_sim_res = run_search(index, query_doc, "code_embedding", limit)
code_sim_tab.dataframe(code_sim_res[display_columns])
else:
code_sim_tab.error("No function code was extracted for this repo!")
if query_doc.doc_embedding is not None:
doc_sim_res = run_search(index, query_doc, "doc_embedding", limit)
doc_sim_tab.dataframe(doc_sim_res[display_columns])
else:
doc_sim_tab.error("No function docstring was extracted for this repo!")
|