Spaces:
Running
Running
File size: 6,368 Bytes
3178eaa 374f8ce 3178eaa 374f8ce 3178eaa 374f8ce 3178eaa 374f8ce 10a713a 374f8ce 3178eaa 374f8ce 3178eaa 26c0e0c 0affb4b 3178eaa 374f8ce 10a713a 374f8ce 0affb4b 374f8ce 10a713a 374f8ce 0affb4b 3178eaa 374f8ce 10a713a 3178eaa 266a587 10a713a 266a587 10a713a 3178eaa 0affb4b 3178eaa 266a587 3178eaa 374f8ce 0affb4b 374f8ce 3178eaa 374f8ce 0affb4b 374f8ce 0affb4b 374f8ce 3178eaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
import base64
import numpy as np
from PIL import Image
import io
import requests
import replicate
from flask import Flask, request
import gradio as gr
import openai
from openai import OpenAI
from dotenv import load_dotenv, find_dotenv
import json
# Locate the .env file
dotenv_path = find_dotenv()
load_dotenv(dotenv_path)
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
REPLICATE_API_TOKEN = os.getenv('REPLICATE_API_TOKEN')
client = OpenAI()
def call_openai(pil_image):
# Save the PIL image to a bytes buffer
buffered = io.BytesIO()
pil_image.save(buffered, format="JPEG")
# Encode the image to base64
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8')
try:
response = client.chat.completions.create(
model="gpt-4o",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "You are a product designer. I've attached a moodboard here. In one sentence, what do all of these elements have in common? Answer from a design language perspective, if you were telling another designer to create something similar, including any repeating colors and materials and shapes and textures. This is for a single product, so respond as though you're applying them to a single object. Reply with a completion to the following (don't include these words please, just the rest): [A render of an object which] [your response]. Do NOT include 'A render of an object which' in your response."},
{
"type": "image_url",
"image_url": {
"url": "data:image/jpeg;base64," + image_data,
},
},
],
}
],
max_tokens=300,
)
return response.choices[0].message.content
except openai.BadRequestError as e:
print(e)
print("e type")
print(type(e))
raise gr.Error(f"Please retry with a different moodboard file (below 20 MB in size and is of one the following formats: ['png', 'jpeg', 'gif', 'webp'])")
except Exception as e:
raise gr.Error("Unknown Error")
# Todo -- better prompt generator, add another LLM layer combining the user prompt and moodboard description (in the case of the jacket, 'high quality render of yellow jacket, its fabric is a pattern of cosmic etc etc' worked well)
# Could even do this 4 different times to get more diversity of renders
# Add "simple" to prompt before word
def image_classifier(moodboard, starter_image, image_strength, prompt):
if moodboard is not None:
pil_image = Image.fromarray(moodboard.astype('uint8'))
openai_response = call_openai(pil_image)
else:
raise gr.Error(f"Please upload a moodboard to control image generation style")
if starter_image is not None:
starter_image_pil = Image.fromarray(starter_image.astype('uint8'))
# Resize the starter image if either dimension is larger than 768 pixels
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768:
# Calculate the new size while maintaining the aspect ratio
if starter_image_pil.size[0] > starter_image_pil.size[1]:
# Width is larger than height
new_width = 768
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1])
else:
# Height is larger than width
new_height = 768
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0])
# Resize the image
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
# Save the starter image to a bytes buffer
buffered = io.BytesIO()
starter_image_pil.save(buffered, format="JPEG")
# Encode the starter image to base64
starter_image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
input = {
"prompt": "high quality render of a " + prompt + " which " + openai_response + ", minimalist and simple mockup on a white background",
"output_format": "jpg"
}
if starter_image is not None:
input["image"] = "data:image/jpeg;base64," + starter_image_base64
input["prompt_strength"] = 1-image_strength
try:
output = replicate.run(
"stability-ai/stable-diffusion-3",
input=input
)
image_url = output[0]
response = requests.get(image_url)
img2 = Image.open(io.BytesIO(response.content))
except Exception as e:
raise gr.Error(f"Second image download failed: {e}")
# Call SDXL API with the response from OpenAI
input = {
"width": 768,
"height": 768,
"prompt": "centered high quality render of a " + prompt + " which " + openai_response + ' centered on a plain white background',
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch, logo, buttons, markings, text, wires, complex, screws, nails, construction",
"refine": "expert_ensemble_refiner",
"apply_watermark": False,
"num_inference_steps": 25,
"num_outputs": 2,
"guidance_scale": 8.5
}
if starter_image is not None:
input["image"] = "data:image/jpeg;base64," + starter_image_base64
input["prompt_strength"] = 1-image_strength
output = replicate.run(
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
input=input
)
images = [img2]
for i in range(min(len(output), 2)):
image_url = output[i]
response = requests.get(image_url)
images.append(Image.open(io.BytesIO(response.content)))
# Add empty images if fewer than 3 were returned
while len(images) < 3:
images.append(Image.new('RGB', (768, 768), 'gray'))
images.reverse()
return images
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2), "text"], outputs=["image", "image", "image"])
demo.launch(share=True)
|