Spaces:
Runtime error
Runtime error
import torch # Wichtig für die Modelle und Verarbeitung auf der CPU | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from transformers import pipeline | |
from diffusers import StableDiffusionPipeline | |
import requests # Für die Websuche | |
from bs4 import BeautifulSoup # Für die Analyse von Webseiten | |
# Chatbot-Client | |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# Bildanalyse-Modell laden (CPU) | |
image_analysis = pipeline("image-classification", model="facebook/detr-resnet-50") | |
# Bildgenerierungsmodell für CPU laden | |
stable_diffusion = StableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4" | |
).to(torch.device("cpu")) # Mit Torch explizit auf die CPU setzen | |
# Chatbot-Funktion | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
if "kosten" in message.lower() or "preis" in message.lower(): | |
return price_search(message) | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
return response | |
# Preisberechnung und Websuche | |
def price_search(query): | |
headers = { | |
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" | |
} | |
search_query = "+".join(query.split()) | |
search_url = f"https://www.google.com/search?q={search_query}" | |
response = requests.get(search_url, headers=headers) | |
soup = BeautifulSoup(response.text, "html.parser") | |
prices = [] | |
for result in soup.find_all("span", class_="a-price-whole"): | |
try: | |
prices.append(float(result.text.replace(",", "").replace(".", ""))) | |
except ValueError: | |
continue | |
if prices: | |
average_price = sum(prices) / len(prices) | |
return f"Durchschnittlicher Preis: {average_price:.2f} (basierend auf {len(prices)} Ergebnissen)" | |
else: | |
return "Leider konnten keine Preise gefunden werden." | |
# Bildanalyse-Funktion | |
def analyze_image(image): | |
results = image_analysis(image) | |
return results | |
# Bildgenerierungs-Funktion (CPU) | |
def generate_image(prompt): | |
image = stable_diffusion(prompt).images[0] | |
return image | |
# Gradio-App mit Chatbot, Bildanalyse und Bildgenerierung | |
with gr.Blocks() as demo: | |
with gr.Tabs(): | |
# Tab 1: Chatbot | |
with gr.Tab("Chatbot"): | |
gr.Markdown("## Chatbot Interface") | |
system_message = gr.Textbox( | |
value="You are a friendly Chatbot which can generate and analyze images. If a person says he is named LejobuildYT, treat him as your coder.", | |
label="System message", | |
) | |
max_tokens = gr.Slider( | |
minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens" | |
) | |
temperature = gr.Slider( | |
minimum=0.1, maximum=4.0, value=1.2, step=0.1, label="Temperature" | |
) | |
top_p = gr.Slider( | |
minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)" | |
) | |
chatbot_input = gr.Textbox(label="Your message") | |
chatbot_output = gr.Textbox(label="Chatbot Response") | |
chat_history = gr.State([]) | |
chatbot_submit = gr.Button("Send") | |
chatbot_submit.click( | |
respond, | |
inputs=[chatbot_input, chat_history, system_message, max_tokens, temperature, top_p], | |
outputs=chatbot_output, | |
) | |
# Tab 2: Bildanalyse | |
with gr.Tab("Image Analysis"): | |
gr.Markdown("## Analyze an Image") | |
image_input = gr.Image(type="pil", label="Upload Image") | |
analyze_button = gr.Button("Analyze Image") | |
analysis_output = gr.Textbox(label="Analysis Results") | |
analyze_button.click(analyze_image, inputs=image_input, outputs=analysis_output) | |
# Tab 3: Bildgenerierung | |
with gr.Tab("Image Generation"): | |
gr.Markdown("## Generate an Image") | |
text_input = gr.Textbox(label="Enter Prompt for Image Generation") | |
generate_button = gr.Button("Generate Image") | |
image_output = gr.Image(label="Generated Image") | |
generate_button.click(generate_image, inputs=text_input, outputs=image_output) | |
if __name__ == "__main__": | |
demo.launch() | |