Spaces:
Sleeping
A newer version of the Streamlit SDK is available:
1.44.1
API Documentation for Lenylvt/SRT_to_Video-API
This documentation covers how to interact with the SRT_to_Video API using both Python and JavaScript.
API Endpoint
To use this API, you can choose between the gradio_client
Python library docs or the @gradio/client
JavaScript package doc.
Python Usage
Step 1: Installation
First, install the gradio_client
if it's not already installed.
pip install gradio_client
Step 2: Making a Request
Find the API endpoint for the function you want to use. Replace the placeholder values in the snippet below with your input data. For private Spaces, you might need to include your Hugging Face token as well.
API Name: /predict
from gradio_client import Client
client = Client("Lenylvt/SRT_to_Video-API")
result = client.predict(
{
"video": "https://github.com/gradio-app/gradio/raw/main/demo/video_component/files/world.mp4",
"subtitles": None
}, # Dict(video: filepath, subtitles: filepath | None) in 'Video' Video component
"https://github.com/gradio-app/gradio/raw/main/test/test_files/sample_file.pdf", # filepath in 'Subtitle' File component
"Hard", # Literal['Hard', 'Soft'] in 'Subtitle Type' Radio component
"en", # str in 'Subtitle Language (ISO 639-1 code, e.g., 'en' for English)' Textbox component
api_name="/predict"
)
print(result)
Return Type(s):
- A
Dict(video: filepath, subtitles: filepath | None)
representing the output in the 'Processed Video' Video component.
JavaScript Usage
Step 1: Installation
For JavaScript, install the @gradio/client
package if it's not already present in your project.
npm i -D @gradio/client
Step 2: Making a Request
Similar to Python, find the API endpoint that matches your desired function. Replace the placeholders with your own data. Include your Hugging Face token for private Spaces.
API Name: /predict
import { client } from "@gradio/client";
const response_0 = await fetch("[object Object]");
const exampleVideo = await response_0.blob();
const response_1 = await fetch("https://github.com/gradio-app/gradio/raw/main/test/test_files/sample_file.pdf");
const exampleFile = await response_1.blob();
const app = await client("Lenylvt/SRT_to_Video-API");
const result = await app.predict("/predict", [
exampleVideo, // blob in 'Video' Video component
exampleFile, // blob in 'Subtitle' File component
"Hard", // string in 'Subtitle Type' Radio component
"en", // string in 'Subtitle Language (ISO 639-1 code, e.g., 'en' for English)' Textbox component
]);
console.log(result.data);
Return Type(s):
undefined
representing the output in the 'Processed Video' Video component.