File size: 2,134 Bytes
4bdcdda
 
d60a3d5
a03a333
d60a3d5
4bdcdda
 
 
d65424d
4bdcdda
 
0f9dc19
4bdcdda
d65424d
2189552
d65424d
e8aca1c
 
d65424d
 
 
 
 
 
 
 
 
 
 
 
2189552
4bdcdda
 
2189552
d60a3d5
 
550812d
 
4bdcdda
 
d60a3d5
2189552
d65424d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import requests
import pandas as pd
import gradio as gr
from transformers import MarianMTModel, MarianTokenizer

# Fetch and parse language options from the provided URL
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md"
response = requests.get(url)
df = pd.read_csv(response.url, delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
df['ISO 639-1'] = df['ISO 639-1'].str.strip()

# Prepare language options for the dropdown
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']} - {row['Language Name']}") for index, row in df.iterrows()]

def translate_text(text, source_language_code, target_language_code):
    source_language_code = source_language.split(' - ')[0].strip()
    target_language_code = target_language.split(' - ')[0].strip()
    # Construct model name using ISO 639-1 codes
    model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}"
    if source_language_code == target_language_code:
        return "Translation between the same languages is not supported."
    try:
        tokenizer = MarianTokenizer.from_pretrained(model_name)
        model = MarianMTModel.from_pretrained(model_name)
    except Exception as e:
        return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}"
    translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512))
    translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
    return translated_text

source_language_dropdown = gr.Dropdown(choices=language_options, label="Source Language")
target_language_dropdown = gr.Dropdown(choices=language_options, label="Target Language")

iface = gr.Interface(
    fn=translate_text,
    inputs=[gr.Textbox(lines=2, placeholder="Enter text to translate..."), source_language_dropdown, target_language_dropdown],
    outputs=gr.Textbox(),
    title="Text Translator with Dynamic Language Options",
    description="Select source and target languages to translate text."
)

iface.launch()