Spaces:
Sleeping
Sleeping
File size: 2,665 Bytes
4bdcdda d60a3d5 a03a333 d60a3d5 4bdcdda d65424d 4bdcdda 0f9dc19 4bdcdda 31f1556 2189552 d65424d 31f1556 d65424d 31f1556 d65424d 31f1556 d65424d 31f1556 d65424d 2189552 4bdcdda 2189552 d60a3d5 550812d d523365 aac41e3 d60a3d5 2189552 d65424d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import requests
import pandas as pd
import gradio as gr
from transformers import MarianMTModel, MarianTokenizer
# Fetch and parse language options from the provided URL
url = "https://huggingface.co/Lenylvt/LanguageISO/resolve/main/iso.md"
response = requests.get(url)
df = pd.read_csv(response.url, delimiter="|", skiprows=2, header=None).dropna(axis=1, how='all')
df.columns = ['ISO 639-1', 'ISO 639-2', 'Language Name', 'Native Name']
df['ISO 639-1'] = df['ISO 639-1'].str.strip()
# Prepare language options for the dropdown
language_options = [(row['ISO 639-1'], f"{row['ISO 639-1']}") for index, row in df.iterrows()]
def translate_text(text, source_language_code, target_language_code):
# Construct model name using ISO 639-1 codes
model_name = f"Helsinki-NLP/opus-mt-{source_language_code}-{target_language_code}"
# Check if source and target languages are the same, which is not supported for translation
if source_language_code == target_language_code:
return "Translation between the same languages is not supported."
# Load tokenizer and model
try:
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
except Exception as e:
return f"Failed to load model for {source_language_code} to {target_language_code}: {str(e)}"
# Translate text
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512))
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
source_language_dropdown = gr.Dropdown(choices=language_options, label="Source Language")
target_language_dropdown = gr.Dropdown(choices=language_options, label="Target Language")
iface = gr.Interface(
fn=translate_text,
inputs=[gr.Textbox(lines=2, placeholder="Enter text to translate..."), source_language_dropdown, target_language_dropdown],
outputs=gr.Textbox(),
title="Translator API",
description="We use model from [Language Technology Research Group at the University of Helsinki](https://huggingface.co/Helsinki-NLP). For web use please visit [this space](https://huggingface.co/spaces/Lenylvt/Translator). π΄ If you have this error : 'Failed to load model for fr to aa: Helsinki-NLP/opus-mt-fr-aa is not a local folder and is not a valid model identifier listed on https://huggingface.co/models If this is a private repository, make sure to pass a token having permission to this repo either by logging in with huggingface-cli login or by passing token=<your_token>', its because the language is not available."
)
iface.launch()
|