Spaces:
Running
Running
File size: 9,725 Bytes
5c05d7a 2f36052 5c05d7a 2f36052 5c05d7a 2f36052 5c05d7a e6abf6e 5c05d7a e6abf6e 5c05d7a 9e2bc99 5c05d7a 2f36052 dd5783d 05d82ce dd5783d 5c05d7a e6abf6e 5c05d7a e6abf6e 5c05d7a e6abf6e 5c05d7a 45a7450 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import pandas as pd
import networkx as nx
import plotly.graph_objects as go
import gradio as gr
import re
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Load and preprocess the dataset
file_path = "cbinsights_data.csv" # Replace with your actual file path
try:
data = pd.read_csv(file_path, skiprows=1)
logger.info("CSV file loaded successfully.")
except FileNotFoundError:
logger.error(f"File not found: {file_path}")
raise
except Exception as e:
logger.error(f"Error loading CSV file: {e}")
raise
# Standardize column names
data.columns = data.columns.str.strip().str.lower()
logger.info(f"Standardized Column Names: {data.columns.tolist()}")
# Filter out Health since Healthcare is the correct Market Sergment
print(data.head())
data = data[data.industry != 'Health']
# Identify the valuation column
valuation_columns = [col for col in data.columns if 'valuation' in col.lower()]
if len(valuation_columns) != 1:
logger.error("Unable to identify a single valuation column.")
raise ValueError("Dataset should contain exactly one column with 'valuation' in its name.")
valuation_column = valuation_columns[0]
logger.info(f"Using valuation column: {valuation_column}")
# Clean and prepare data
data["Valuation_Billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True)
data["Valuation_Billions"] = pd.to_numeric(data["Valuation_Billions"], errors='coerce')
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col)
data.rename(columns={
"company": "Company",
"date_joined": "Date_Joined",
"country": "Country",
"city": "City",
"industry": "Industry",
"select_investors": "Select_Investors"
}, inplace=True)
logger.info("Data cleaned and columns renamed.")
# Build investor-company mapping
def build_investor_company_mapping(df):
mapping = {}
for _, row in df.iterrows():
company = row["Company"]
investors = row["Select_Investors"]
if pd.notnull(investors):
for investor in investors.split(","):
investor = investor.strip()
if investor:
mapping.setdefault(investor, []).append(company)
return mapping
investor_company_mapping = build_investor_company_mapping(data)
logger.info("Investor to company mapping created.")
# Filter investors by country, industry, investor selection, and company selection
def filter_investors(selected_country, selected_industry, selected_investors, selected_company):
filtered_data = data.copy()
if selected_country != "All":
filtered_data = filtered_data[filtered_data["Country"] == selected_country]
if selected_industry != "All":
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry]
if selected_investors:
pattern = '|'.join([re.escape(inv) for inv in selected_investors])
filtered_data = filtered_data[filtered_data["Select_Investors"].str.contains(pattern, na=False)]
if selected_company != "All":
filtered_data = filtered_data[filtered_data["Company"] == selected_company]
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data)
filtered_investors = list(investor_company_mapping_filtered.keys())
return filtered_investors, filtered_data
# Generate Plotly graph
def generate_graph(investors, filtered_data):
if not investors:
logger.warning("No investors selected.")
return go.Figure()
# Create a color map for investors
unique_investors = investors
num_colors = len(unique_investors)
color_palette = [
"#377eb8", # Blue
"#e41a1c", # Red
"#4daf4a", # Green
"#984ea3", # Purple
"#ff7f00", # Orange
"#ffff33", # Yellow
"#a65628", # Brown
"#f781bf", # Pink
"#999999", # Grey
]
while num_colors > len(color_palette):
color_palette.extend(color_palette)
investor_color_map = {investor: color_palette[i] for i, investor in enumerate(unique_investors)}
G = nx.Graph()
for investor in investors:
companies = filtered_data[filtered_data["Select_Investors"].str.contains(re.escape(investor), na=False)]["Company"].tolist()
for company in companies:
G.add_node(company)
G.add_node(investor)
G.add_edge(investor, company)
pos = nx.spring_layout(G, seed=42)
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=0.5, color='#aaaaaa'),
hoverinfo='none',
mode='lines'
)
node_x = []
node_y = []
node_text = []
node_color = []
node_size = []
node_hovertext = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
if node in investors:
node_text.append(node)
node_color.append(investor_color_map[node])
node_size.append(30)
node_hovertext.append(f"Investor: {node}")
else:
valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].values
industry = filtered_data.loc[filtered_data["Company"] == node, "Industry"].values
if len(valuation) > 0 and not pd.isnull(valuation[0]):
size = valuation[0] * 5
if size < 10:
size = 10
else:
size = 15
node_size.append(size)
node_text.append("")
node_color.append("#a6d854")
hovertext = f"Company: {node}"
if len(industry) > 0 and not pd.isnull(industry[0]):
hovertext += f"<br>Industry: {industry[0]}"
if len(valuation) > 0 and not pd.isnull(valuation[0]):
hovertext += f"<br>Valuation: ${valuation[0]}B"
node_hovertext.append(hovertext)
node_trace = go.Scatter(
x=node_x,
y=node_y,
text=node_text,
mode='markers+text',
hoverinfo='text',
hovertext=node_hovertext,
marker=dict(
showscale=False,
size=node_size,
color=node_color,
line=dict(width=0.5, color='#333333')
),
textposition="middle center",
textfont=dict(size=12, color="#000000")
)
legend_items = []
for investor in unique_investors:
legend_items.append(
go.Scatter(
x=[None],
y=[None],
mode='markers',
marker=dict(
size=10,
color=investor_color_map[investor]
),
legendgroup=investor,
showlegend=True,
name=investor
)
)
fig = go.Figure(data=legend_items + [edge_trace, node_trace])
fig.update_layout(
title="Venture Networks",
titlefont_size=24,
margin=dict(l=20, r=20, t=60, b=20),
hovermode='closest',
width=1200,
height=800
)
fig.update_layout(
autosize=True,
xaxis={'showgrid': False, 'zeroline': False, 'visible': False},
yaxis={'showgrid': False, 'zeroline': False, 'visible': False}
)
return fig
# Gradio app
def app(selected_country, selected_industry, selected_company, selected_investors):
investors, filtered_data = filter_investors(selected_country, selected_industry, selected_investors, selected_company)
if not investors:
return "No investors found with the selected filters.", go.Figure()
graph = generate_graph(investors, filtered_data)
return ', '.join(investors), graph
# Main function
def main():
country_list = ["All"] + sorted(data["Country"].dropna().unique())
industry_list = ["All"] + sorted(data["Industry"].dropna().unique())
company_list = ["All"] + sorted(data["Company"].dropna().unique())
investor_list = sorted(investor_company_mapping.keys())
with gr.Blocks(title="Venture Networks Visualization") as demo:
gr.Markdown("""
# Venture Networks Visualization
Explore the connections between investors and companies in the venture capital ecosystem. Use the filters below to customize the network graph.
""")
with gr.Row():
country_filter = gr.Dropdown(choices=country_list, label="Country", value="All")
industry_filter = gr.Dropdown(choices=industry_list, label="Industry", value="All")
company_filter = gr.Dropdown(choices=company_list, label="Company", value="All")
investor_filter = gr.Dropdown(choices=investor_list, label="Select Investors", value=[], multiselect=True)
with gr.Row():
investor_output = gr.Textbox(label="Filtered Investors", interactive=False)
graph_output = gr.Plot(label="Network Graph")
inputs = [country_filter, industry_filter, company_filter, investor_filter]
outputs = [investor_output, graph_output]
country_filter.change(app, inputs, outputs)
industry_filter.change(app, inputs, outputs)
company_filter.change(app, inputs, outputs)
investor_filter.change(app, inputs, outputs)
gr.Markdown("""
**Instructions:** Use the dropdowns to filter the network graph.
""")
demo.launch()
if __name__ == "__main__":
main()
|