Spaces:
Sleeping
Sleeping
import pandas as pd | |
import networkx as nx | |
import plotly.graph_objects as go | |
import gradio as gr | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Load and preprocess the dataset | |
file_path = "cbinsights_data.csv" # Replace with your actual file path | |
try: | |
data = pd.read_csv(file_path, skiprows=1) | |
logger.info("CSV file loaded successfully.") | |
except FileNotFoundError: | |
logger.error(f"File not found: {file_path}") | |
raise | |
except Exception as e: | |
logger.error(f"Error loading CSV file: {e}") | |
raise | |
# Standardize column names: strip whitespace and convert to lowercase | |
data.columns = data.columns.str.strip().str.lower() | |
logger.info(f"Standardized Column Names: {data.columns.tolist()}") | |
# Identify the valuation column dynamically | |
valuation_columns = [col for col in data.columns if 'valuation' in col.lower()] | |
if not valuation_columns: | |
logger.error("No column containing 'Valuation' found in the dataset.") | |
raise ValueError("Data Error: Unable to find the valuation column. Please check your CSV file.") | |
elif len(valuation_columns) > 1: | |
logger.error("Multiple columns containing 'Valuation' found in the dataset.") | |
raise ValueError("Data Error: Multiple valuation columns detected. Please ensure only one valuation column exists.") | |
else: | |
valuation_column = valuation_columns[0] | |
logger.info(f"Using valuation column: {valuation_column}") | |
# Clean and prepare data | |
data["valuation_billions"] = data[valuation_column].replace({'\$': '', ',': ''}, regex=True) | |
data["valuation_billions"] = pd.to_numeric(data["valuation_billions"], errors='coerce') | |
logger.info("Valuation data cleaned and converted to numeric.") | |
# Strip whitespace from all string columns | |
data = data.apply(lambda col: col.str.strip() if col.dtype == "object" else col) | |
logger.info("Whitespace stripped from all string columns.") | |
# Rename columns for consistency | |
expected_columns = { | |
"company": "Company", | |
"valuation_billions": "Valuation_Billions", | |
"date_joined": "Date_Joined", | |
"country": "Country", | |
"city": "City", | |
"industry": "Industry", | |
"select_investors": "Select_Investors" | |
} | |
missing_columns = set(expected_columns.keys()) - set(data.columns) | |
if missing_columns: | |
logger.error(f"Missing columns in the dataset: {missing_columns}") | |
raise ValueError(f"Data Error: Missing columns {missing_columns} in the dataset.") | |
data = data.rename(columns=expected_columns) | |
logger.info("Columns renamed for consistency.") | |
# Parse the "Select_Investors" column to map investors to companies | |
def build_investor_company_mapping(df): | |
mapping = {} | |
for _, row in df.iterrows(): | |
company = row["Company"] | |
investors = row["Select_Investors"] | |
if pd.notnull(investors): | |
for investor in investors.split(","): | |
investor = investor.strip() | |
if investor: # Ensure investor is not an empty string | |
mapping.setdefault(investor, []).append(company) | |
return mapping | |
investor_company_mapping = build_investor_company_mapping(data) | |
logger.info("Investor to company mapping created.") | |
# Function to filter investors based on selected country and industry | |
def filter_investors_by_country_and_industry(selected_country, selected_industry): | |
filtered_data = data.copy() | |
logger.info(f"Filtering data for Country: {selected_country}, Industry: {selected_industry}") | |
if selected_country != "All": | |
filtered_data = filtered_data[filtered_data["Country"] == selected_country] | |
logger.info(f"Data filtered by country: {selected_country}. Remaining records: {len(filtered_data)}") | |
if selected_industry != "All": | |
filtered_data = filtered_data[filtered_data["Industry"] == selected_industry] | |
logger.info(f"Data filtered by industry: {selected_industry}. Remaining records: {len(filtered_data)}") | |
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data) | |
# Calculate total valuation per investor | |
investor_valuations = {} | |
for investor, companies in investor_company_mapping_filtered.items(): | |
total_valuation = filtered_data[filtered_data["Company"].isin(companies)]["Valuation_Billions"].sum() | |
if total_valuation >= 20: # Investors with >= 20B total valuation | |
investor_valuations[investor] = total_valuation | |
logger.info(f"Filtered investors with total valuation >= 20B: {len(investor_valuations)}") | |
return list(investor_valuations.keys()), filtered_data | |
# Function to generate the Plotly graph | |
def generate_graph(selected_investors, filtered_data): | |
if not selected_investors: | |
logger.warning("No investors selected. Returning empty figure.") | |
return go.Figure() | |
investor_company_mapping_filtered = build_investor_company_mapping(filtered_data) | |
filtered_mapping = {inv: investor_company_mapping_filtered[inv] for inv in selected_investors if inv in investor_company_mapping_filtered} | |
logger.info(f"Generating graph for {len(filtered_mapping)} investors.") | |
# Build the graph | |
G = nx.Graph() | |
for investor, companies in filtered_mapping.items(): | |
for company in companies: | |
G.add_edge(investor, company) | |
# Generate positions using spring layout | |
pos = nx.spring_layout(G, k=0.2, seed=42) | |
# Prepare Plotly traces | |
edge_x = [] | |
edge_y = [] | |
for edge in G.edges(): | |
x0, y0 = pos[edge[0]] | |
x1, y1 = pos[edge[1]] | |
edge_x += [x0, x1, None] | |
edge_y += [y0, y1, None] | |
edge_trace = go.Scatter( | |
x=edge_x, y=edge_y, | |
line=dict(width=0.5, color='#888'), | |
hoverinfo='none', | |
mode='lines' | |
) | |
node_x = [] | |
node_y = [] | |
node_text = [] | |
node_size = [] | |
node_color = [] | |
customdata = [] | |
for node in G.nodes(): | |
x, y = pos[node] | |
node_x.append(x) | |
node_y.append(y) | |
if node in filtered_mapping: | |
node_text.append(f"Investor: {node}") | |
node_size.append(20) # Investors have larger size | |
node_color.append('orange') | |
customdata.append(None) # Investors do not have a single valuation | |
else: | |
valuation = filtered_data.loc[filtered_data["Company"] == node, "Valuation_Billions"].sum() | |
node_text.append(f"Company: {node}<br>Valuation: ${valuation}B") | |
node_size.append(10 + (valuation / filtered_data["Valuation_Billions"].max()) * 30 if filtered_data["Valuation_Billions"].max() else 10) | |
node_color.append('green') | |
customdata.append(f"${valuation}B") | |
node_trace = go.Scatter( | |
x=node_x, y=node_y, | |
mode='markers', | |
hoverinfo='text', | |
text=node_text, | |
customdata=customdata, | |
marker=dict( | |
showscale=False, | |
colorscale='YlGnBu', | |
color=node_color, | |
size=node_size, | |
line_width=2 | |
) | |
) | |
fig = go.Figure(data=[edge_trace, node_trace], | |
layout=go.Layout( | |
title='Venture Network Visualization', | |
titlefont_size=16, | |
showlegend=False, | |
hovermode='closest', | |
margin=dict(b=20,l=5,r=5,t=40), | |
annotations=[ dict( | |
text="", | |
showarrow=False, | |
xref="paper", yref="paper") ], | |
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), | |
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)) | |
) | |
fig.update_traces(marker=dict(line=dict(width=0.5, color='white')), selector=dict(mode='markers')) | |
logger.info("Plotly graph generated successfully.") | |
return fig | |
# Gradio app function to update CheckboxGroup and filtered data | |
def app(selected_country, selected_industry): | |
investor_list, filtered_data = filter_investors_by_country_and_industry(selected_country, selected_industry) | |
logger.info("Updating CheckboxGroup and filtered data holder.") | |
# Use gr.update() to create an update dictionary for the CheckboxGroup | |
return gr.update( | |
choices=investor_list, | |
value=investor_list, | |
visible=True | |
), filtered_data | |
# Gradio Interface | |
def main(): | |
country_list = ["All"] + sorted(data["Country"].dropna().unique()) | |
industry_list = ["All"] + sorted(data["Industry"].dropna().unique()) | |
# Ensure the default values for dropdowns exist | |
default_country = "United States" if "United States" in country_list else "All" | |
default_industry = "Enterprise Tech" if "Enterprise Tech" in industry_list else "All" | |
logger.info(f"Available countries: {country_list}") | |
logger.info(f"Available industries: {industry_list}") | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
# Set default value for country and industry dropdowns | |
country_filter = gr.Dropdown(choices=country_list, label="Filter by Country", value=default_country) | |
industry_filter = gr.Dropdown(choices=industry_list, label="Filter by Industry", value=default_industry) | |
filtered_investor_list = gr.CheckboxGroup(choices=[], label="Select Investors", visible=False) | |
graph_output = gr.Plot(label="Venture Network Graph") | |
valuation_display = gr.Markdown(value="Click on a company node to see its valuation.", label="Company Valuation") | |
filtered_data_holder = gr.State() | |
# Event handlers for filters | |
country_filter.change( | |
app, | |
inputs=[country_filter, industry_filter], | |
outputs=[filtered_investor_list, filtered_data_holder] | |
) | |
industry_filter.change( | |
app, | |
inputs=[country_filter, industry_filter], | |
outputs=[filtered_investor_list, filtered_data_holder] | |
) | |
# Generate graph when investors are selected | |
filtered_investor_list.change( | |
generate_graph, | |
inputs=[filtered_investor_list, filtered_data_holder], | |
outputs=graph_output | |
) | |
# Handle plot click to display valuation | |
def display_valuation(plotly_event): | |
if not plotly_event or "points" not in plotly_event or not plotly_event["points"]: | |
return "Click on a company node to see its valuation." | |
point_data = plotly_event["points"][0] | |
if "customdata" in point_data and point_data["customdata"]: | |
return f"**Valuation:** {point_data['customdata']}" | |
return "Click on a company node to see its valuation." | |
graph_output.events().on_click( | |
fn=display_valuation, | |
inputs=[graph_output], | |
outputs=valuation_display | |
) | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |