LeonceNsh's picture
Update app.py
cb8ca88 verified
import yfinance as yf
import matplotlib.pyplot as plt
import numpy as np
from concurrent.futures import ThreadPoolExecutor, as_completed
from datetime import datetime
from PIL import Image
import io
import gradio as gr
from cachetools import cached, TTLCache
import cProfile
import pstats
# Global fontsize variable
FONT_SIZE = 32
# Company ticker mapping
COMPANY_TICKERS = {
'Union Pacific': 'UNP',
'HubSpot': 'HUBS',
'Canadian Pacific KC': 'CP',
'Smartsheet':'SMAR',
'FedEx': 'FDX',
'Dollar General Corp': 'DG',
'Autozone': 'AZO',
'Honeywell International':'HON',
'XPO Logistics': 'XPO',
'JB Hunt Transport': 'JBHT',
'Gilead Sciences': 'GILD',
'Tractor Supply Co': 'TSCO',
'Broadcom Inc':'AVGO',
'Snap-On': 'SNA',
'Eastman Chemical Co': 'EMN',
'Bridgestone': 'BRDCY',
'Expeditors Int': 'EXPD',
'EMCOR Group': 'EME',
'Johnson Controls': 'JCI',
'ArcBest': 'ARCB',
'Arch Capital Group': 'ACGL',
'Gartner': 'IT',
'Arrow Electronics': 'ARW'
}
# Cache with 1-day TTL
cache = TTLCache(maxsize=100, ttl=86400)
@cached(cache)
def fetch_historical_data(ticker, start_date, end_date):
"""Fetch historical stock data and market cap from Yahoo Finance."""
try:
data = yf.download(ticker, start=start_date, end=end_date)
if data.empty:
raise ValueError(f"No data found for ticker {ticker}")
info = yf.Ticker(ticker).info
market_cap = info.get('marketCap', 'N/A')
if market_cap != 'N/A':
market_cap = market_cap / 1e9 # Convert to billions
return data, market_cap
except Exception as e:
print(f"Error fetching data for {ticker}: {e}")
return None, 'N/A'
def plot_to_image(plt, title, market_cap):
"""Convert plot to a PIL Image object."""
plt.title(title, fontsize=FONT_SIZE + 1, pad=40)
plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold')
plt.legend(fontsize=FONT_SIZE)
plt.xlabel('Date', fontsize=FONT_SIZE)
plt.ylabel('', fontsize=FONT_SIZE)
plt.grid(True)
plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE)
plt.yticks(fontsize=FONT_SIZE)
plt.tight_layout(rect=[0, 0, 1, 0.88])
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=400)
plt.close()
buf.seek(0)
return Image.open(buf)
def plot_indicator(data, company_name, ticker, indicator, market_cap):
"""Plot selected technical indicator for a single company."""
plt.figure(figsize=(16, 10))
if indicator == "SMA":
sma_55 = data['Close'].rolling(window=55).mean()
sma_100 = data['Close'].rolling(window=100).mean() # 100-day SMA
sma_200 = data['Close'].rolling(window=252).mean()
plt.plot(data.index, data['Close'], label='Close')
plt.plot(data.index, sma_55, label='55-day SMA')
plt.plot(data.index, sma_100, label='100-day SMA') # Plot 100-day SMA
plt.plot(data.index, sma_200, label='252-day SMA')
plt.ylabel('Price', fontsize=FONT_SIZE)
elif indicator == "MACD":
exp1 = data['Close'].ewm(span=12, adjust=False).mean()
exp2 = data['Close'].ewm(span=26, adjust=False).mean()
macd = exp1 - exp2
signal = macd.ewm(span=9, adjust=False).mean()
plt.plot(data.index, macd, label='MACD')
plt.plot(data.index, signal, label='Signal Line')
plt.bar(data.index, macd - signal, label='MACD Histogram')
plt.ylabel('MACD', fontsize=FONT_SIZE)
return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap)
def plot_indicators(company_names, indicator_types):
"""Plot the selected indicators for the selected companies."""
images = []
total_market_cap = 0
if len(company_names) > 7:
return None, "You can select up to 7 companies at the same time.", None
if len(company_names) > 1 and len(indicator_types) > 1:
return None, "You can only select one indicator when selecting multiple companies.", None
with ThreadPoolExecutor() as executor:
future_to_company = {
executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator)
for company in company_names
for indicator in indicator_types
}
for future in as_completed(future_to_company):
company, indicator = future_to_company[future]
ticker = COMPANY_TICKERS[company]
data, market_cap = future.result()
if data is None:
continue
images.append(plot_indicator(data, company, ticker, indicator, market_cap))
if market_cap != 'N/A':
total_market_cap += market_cap
return images, "", total_market_cap
def select_all_indicators(select_all):
"""Select or deselect all indicators based on the select_all flag."""
indicators = ["SMA", "MACD"]
return indicators if select_all else []
def launch_gradio_app():
"""Launch the Gradio app for interactive plotting."""
company_choices = list(COMPANY_TICKERS.keys())
indicators = ["SMA", "MACD"]
def fetch_and_plot(company_names, indicator_types):
images, error_message, total_market_cap = plot_indicators(company_names, indicator_types)
if error_message:
return [None] * len(indicator_types), error_message, None
return images, "", f"Total Market Cap: ${total_market_cap:.2f} Billion" if total_market_cap else "N/A"
with gr.Blocks() as demo:
company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies")
select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True)
indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators")
select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup)
plot_gallery = gr.Gallery(label="Indicator Plots")
error_markdown = gr.Markdown()
market_cap_text = gr.Markdown()
gr.Interface(
fetch_and_plot,
[company_checkboxgroup, indicator_types_checkboxgroup],
[plot_gallery, error_markdown, market_cap_text]
)
demo.launch()
def profile_code():
"""Profile the main functions to find speed bottlenecks."""
profiler = cProfile.Profile()
profiler.enable()
launch_gradio_app()
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumtime')
stats.print_stats(10)
if __name__ == "__main__":
profile_code()