Spaces:
Sleeping
Sleeping
import yfinance as yf | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from datetime import datetime | |
from PIL import Image | |
import io | |
import gradio as gr | |
from cachetools import cached, TTLCache | |
import cProfile | |
import pstats | |
# Global fontsize variable | |
FONT_SIZE = 32 | |
# Company ticker mapping | |
COMPANY_TICKERS = { | |
'Union Pacific': 'UNP', | |
'HubSpot': 'HUBS', | |
'Canadian Pacific KC': 'CP', | |
'Smartsheet':'SMAR', | |
'FedEx': 'FDX', | |
'Dollar General Corp': 'DG', | |
'Autozone': 'AZO', | |
'Honeywell International':'HON', | |
'XPO Logistics': 'XPO', | |
'JB Hunt Transport': 'JBHT', | |
'Gilead Sciences': 'GILD', | |
'Tractor Supply Co': 'TSCO', | |
'Broadcom Inc':'AVGO', | |
'Snap-On': 'SNA', | |
'Eastman Chemical Co': 'EMN', | |
'Bridgestone': 'BRDCY', | |
'Expeditors Int': 'EXPD', | |
'EMCOR Group': 'EME', | |
'Johnson Controls': 'JCI', | |
'ArcBest': 'ARCB', | |
'Arch Capital Group': 'ACGL', | |
'Gartner': 'IT', | |
'Arrow Electronics': 'ARW' | |
} | |
# Cache with 1-day TTL | |
cache = TTLCache(maxsize=100, ttl=86400) | |
def fetch_historical_data(ticker, start_date, end_date): | |
"""Fetch historical stock data and market cap from Yahoo Finance.""" | |
try: | |
data = yf.download(ticker, start=start_date, end=end_date) | |
if data.empty: | |
raise ValueError(f"No data found for ticker {ticker}") | |
info = yf.Ticker(ticker).info | |
market_cap = info.get('marketCap', 'N/A') | |
if market_cap != 'N/A': | |
market_cap = market_cap / 1e9 # Convert to billions | |
return data, market_cap | |
except Exception as e: | |
print(f"Error fetching data for {ticker}: {e}") | |
return None, 'N/A' | |
def plot_to_image(plt, title, market_cap): | |
"""Convert plot to a PIL Image object.""" | |
plt.title(title, fontsize=FONT_SIZE + 1, pad=40) | |
plt.suptitle(f'Market Cap: ${market_cap:.2f} Billion', fontsize=FONT_SIZE - 5, y=0.92, weight='bold') | |
plt.legend(fontsize=FONT_SIZE) | |
plt.xlabel('Date', fontsize=FONT_SIZE) | |
plt.ylabel('', fontsize=FONT_SIZE) | |
plt.grid(True) | |
plt.xticks(rotation=45, ha='right', fontsize=FONT_SIZE) | |
plt.yticks(fontsize=FONT_SIZE) | |
plt.tight_layout(rect=[0, 0, 1, 0.88]) | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', dpi=400) | |
plt.close() | |
buf.seek(0) | |
return Image.open(buf) | |
def plot_indicator(data, company_name, ticker, indicator, market_cap): | |
"""Plot selected technical indicator for a single company.""" | |
plt.figure(figsize=(16, 10)) | |
if indicator == "SMA": | |
sma_55 = data['Close'].rolling(window=55).mean() | |
sma_100 = data['Close'].rolling(window=100).mean() # 100-day SMA | |
sma_200 = data['Close'].rolling(window=252).mean() | |
plt.plot(data.index, data['Close'], label='Close') | |
plt.plot(data.index, sma_55, label='55-day SMA') | |
plt.plot(data.index, sma_100, label='100-day SMA') # Plot 100-day SMA | |
plt.plot(data.index, sma_200, label='252-day SMA') | |
plt.ylabel('Price', fontsize=FONT_SIZE) | |
elif indicator == "MACD": | |
exp1 = data['Close'].ewm(span=12, adjust=False).mean() | |
exp2 = data['Close'].ewm(span=26, adjust=False).mean() | |
macd = exp1 - exp2 | |
signal = macd.ewm(span=9, adjust=False).mean() | |
plt.plot(data.index, macd, label='MACD') | |
plt.plot(data.index, signal, label='Signal Line') | |
plt.bar(data.index, macd - signal, label='MACD Histogram') | |
plt.ylabel('MACD', fontsize=FONT_SIZE) | |
return plot_to_image(plt, f'{company_name} ({ticker}) {indicator}', market_cap) | |
def plot_indicators(company_names, indicator_types): | |
"""Plot the selected indicators for the selected companies.""" | |
images = [] | |
total_market_cap = 0 | |
if len(company_names) > 7: | |
return None, "You can select up to 7 companies at the same time.", None | |
if len(company_names) > 1 and len(indicator_types) > 1: | |
return None, "You can only select one indicator when selecting multiple companies.", None | |
with ThreadPoolExecutor() as executor: | |
future_to_company = { | |
executor.submit(fetch_historical_data, COMPANY_TICKERS[company], '2000-01-01', datetime.now().strftime('%Y-%m-%d')): (company, indicator) | |
for company in company_names | |
for indicator in indicator_types | |
} | |
for future in as_completed(future_to_company): | |
company, indicator = future_to_company[future] | |
ticker = COMPANY_TICKERS[company] | |
data, market_cap = future.result() | |
if data is None: | |
continue | |
images.append(plot_indicator(data, company, ticker, indicator, market_cap)) | |
if market_cap != 'N/A': | |
total_market_cap += market_cap | |
return images, "", total_market_cap | |
def select_all_indicators(select_all): | |
"""Select or deselect all indicators based on the select_all flag.""" | |
indicators = ["SMA", "MACD"] | |
return indicators if select_all else [] | |
def launch_gradio_app(): | |
"""Launch the Gradio app for interactive plotting.""" | |
company_choices = list(COMPANY_TICKERS.keys()) | |
indicators = ["SMA", "MACD"] | |
def fetch_and_plot(company_names, indicator_types): | |
images, error_message, total_market_cap = plot_indicators(company_names, indicator_types) | |
if error_message: | |
return [None] * len(indicator_types), error_message, None | |
return images, "", f"Total Market Cap: ${total_market_cap:.2f} Billion" if total_market_cap else "N/A" | |
with gr.Blocks() as demo: | |
company_checkboxgroup = gr.CheckboxGroup(choices=company_choices, label="Select Companies") | |
select_all_checkbox = gr.Checkbox(label="Select All Indicators", value=False, interactive=True) | |
indicator_types_checkboxgroup = gr.CheckboxGroup(choices=indicators, label="Select Technical Indicators") | |
select_all_checkbox.change(select_all_indicators, inputs=select_all_checkbox, outputs=indicator_types_checkboxgroup) | |
plot_gallery = gr.Gallery(label="Indicator Plots") | |
error_markdown = gr.Markdown() | |
market_cap_text = gr.Markdown() | |
gr.Interface( | |
fetch_and_plot, | |
[company_checkboxgroup, indicator_types_checkboxgroup], | |
[plot_gallery, error_markdown, market_cap_text] | |
) | |
demo.launch() | |
def profile_code(): | |
"""Profile the main functions to find speed bottlenecks.""" | |
profiler = cProfile.Profile() | |
profiler.enable() | |
launch_gradio_app() | |
profiler.disable() | |
stats = pstats.Stats(profiler).sort_stats('cumtime') | |
stats.print_stats(10) | |
if __name__ == "__main__": | |
profile_code() | |